Những câu hỏi liên quan
NL
Xem chi tiết
ND
28 tháng 9 2023 lúc 14:49

\(A=1+3+3^2+3^3+...+3^{99}+3^{100}\\ \Rightarrow3A=3+3^2+3^3+...+3^{100}+3^{101}\\ \Rightarrow3A-A=3^{101}-1\\ \Rightarrow2A=3^{101}-1\\ \Rightarrow A=\left(3^{101}-1\right).\dfrac{1}{2}\\ \Rightarrow\dfrac{3^{101}}{2}-\dfrac{1}{2}.\)

Bình luận (0)
NT
28 tháng 9 2023 lúc 14:54

\(A=1+3+3^2+3^3+...+3^{99}+3^{100}\)

Ta có: \(3A=3+3^2+3^3+...+3^{99}+3^{100}\)

Khi đó: \(3A-A=3+3^2+3^3+...+3^{99}+3^{100}+3^{101}-\left(1+3+3^2+3^3+...+3^{99}+3^{100}\right)\)

\(=3^{101}-1\)

\(\Leftrightarrow2A=3^{101}-1\)

Vậy \(A=\left(3^{101}-1\right):2\)

Bình luận (0)
NL
28 tháng 9 2023 lúc 21:35

em cảm ơn mọi nguoif ạ

Bình luận (0)
H24
Xem chi tiết
TC
Xem chi tiết
NH

       A =          1 +   \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) +.......+\(\dfrac{1}{3^{n-1}}\) + \(\dfrac{1}{3^n}\)  

3\(\times\) A  =  3  +  \(\dfrac{1}{3}\) +  \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+........+ \(\dfrac{1}{3^{n-1}}\)

3A - A =  3 + \(\dfrac{1}{3}\) - 1 - \(\dfrac{1}{3^n}\) 

    2A  = \(\dfrac{7}{3}\) - \(\dfrac{1}{3^n}\)

      A  = ( \(\dfrac{7}{3}\) - \(\dfrac{1}{3^n}\)): 2

     A =   \(\dfrac{7.3^{n-1}-1}{3^n}\) : 2

     A = \(\dfrac{7.3^{n-1}-1}{2.3^n}\)

 

 

Bình luận (0)
NH

   B   =      \(\dfrac{1}{2}\) - \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) - \(\dfrac{1}{2^4}\)+......+\(\dfrac{1}{2^{99}}\) - \(\dfrac{1}{2^{100}}\)

2B    =  2 - \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) -  \(\dfrac{1}{2^3}\)\(\dfrac{1}{2^4}\)-.......-\(\dfrac{1}{2^{99}}\)

2B + B = 2 - \(\dfrac{1}{2^{100}}\)

  3B     =  2 - \(\dfrac{1}{2^{100}}\)

    B     =   ( 2 - \(\dfrac{1}{2^{100}}\)): 3

    B     =     \(\dfrac{2.2^{100}-1}{2^{100}}\) : 3

    B     = \(\dfrac{2^{101}-1}{3.2^{100}}\)

Bình luận (0)
H24
Xem chi tiết
LH
11 tháng 6 2021 lúc 19:59

Với n\(\in N\)* có: \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}\left(n+1-n\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)\(=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

\(\Rightarrow\)\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\) (*)

a) Áp dụng (*) vào T

\(\Rightarrow T=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}\)\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)

b) Có \(VT=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)\(=1-\dfrac{1}{\sqrt{n+1}}=\dfrac{4}{5}\)

\(\Leftrightarrow\sqrt{n+1}=5\Leftrightarrow n=24\) (tm)

Vậy n=24.

Bình luận (0)
PA
Xem chi tiết
ND
3 tháng 2 2019 lúc 9:17

a,M=2^0-2^1+2^2-2^3+2^4-2^5+.....+2^2012

2M=2^1-2^2+2^3-2^4+2^5-2^5+......-2^2012+2^2013

3M=2^0+2^2013

M=(2^0+2^2013)÷3

Vậy.......

b,N=3-3^2+3^3-3^4+3^5-3^6+.....+3^2011-3^2012

3N=3^2-3^3+3^4-3^5+3^6-3^7+......+3^2012-3^2013

4N=3-3^2013

N=(3-3^2013)÷4

Vậy........

K tao nhé ko lên lớp tao đánh m😈😈😈

Bình luận (0)
ND
3 tháng 2 2019 lúc 9:19

Bt dễ thế mà ko làm dc😂😂😂😂😂

Bình luận (0)
PA
3 tháng 2 2019 lúc 9:34

phần c đâu

Bình luận (0)
4D
Xem chi tiết
LL
2 tháng 10 2021 lúc 16:10

Đặt \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\)

\(\Rightarrow2A=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\right)=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}\)

\(\Rightarrow A=2A-A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}-\dfrac{1}{2}-\dfrac{1}{2^2}-...-\dfrac{1}{2^{100}}=1-\dfrac{1}{2^{100}}\)

Bình luận (0)
NA
Xem chi tiết
HP
10 tháng 5 2016 lúc 8:48

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}}\)

=>\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}\)

=>\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

=>\(A=1-\frac{1}{2^{100}}\)

Bình luận (0)
NL
Xem chi tiết
TN
Xem chi tiết