Cho \(x+y=2\) Chứng minh rằng : \(\frac{2+xy}{2-xy}\le3\)
Giúp mình nha!!!
Cho \(x+y=2\). Chứng minh rằng \(\frac{2+xy}{2-xy}\le3\)
áp dụng hệ quả bđt côsi xy≤ (x+y\2)2 =(2\2)2=1
⇒2+xy\2−xy ≤2+1\2−1 = 3
dấu =xảy ra khi x=y=1
Cho a,b,c dương thỏa mãn \(a^2+b^2+c^2\le3\)
Chứng minh rằng \(\frac{1+xy}{z^2+xy}+\frac{1+yz}{x^2+yz}+\frac{1+zx}{y^2+zx}\ge3\)
cho (x-y)^2 + (y-z)^2 + (z-x)^2 = 4 ( x^2 + y^2 + z^2 - xy - yz - zx ).
chứng minh rằng x=y=z
giúp mình với nha
\(4\left(x^2+y^2+z^2-xy-yz-zx\right)=2\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)
Tuwf ddos suy ra x-y=y-z=z-x=0
Bài 1 : Giải phương trình
\(\sqrt{x+3}-\sqrt{2-x}=1\)\(1\)
Bài 2 Cho 2 số dương a, b thõa mãn điều kiện \(2a^2+ab=6ab\)Tính giá trị của biểu thức \(A=\frac{a^2-3ab+5b^2}{a^2+b^2}\)
Bài 3: Cho 3 số x, y, z không âm thõa mãn \(xy+yz+zx\le3\)
Chứng minh rằng \(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\ge\frac{3}{2}\)
Giúp mình mình tick cho nha
bài 3 thôi nhé,mấy bài kia đơn giản mà
Áp dụng bất đẳng thức Schwarts ta có:
\(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\ge\frac{\left(1+1+1\right)^2}{1+1+1+xy+yz+zx}\ge\frac{9}{3+3}=\frac{3}{2}\)
=>đpcm
Dấu = xảy ra khi a=b=c=1
bài 1 dạng này mình ko biết
còn bài 2 thì mình giải rồi nhưng ko chắc
bạn giúp mình cả 2 bài này luôn nha
1/ Cho \(x+y+x=\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)( x,y,z>0). Chứng minh rằng: x=y=z
2/ Cho hai số thực x,y thỏa mãn: xy=1 và x>y. Chứng minh rằng: \(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
3/ Chứng minh rằng \(a+b\ge2\sqrt{ab}\)
Giúp mình với!
1/ Sửa đề: \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow\) \(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)-2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=0\)
\(\Leftrightarrow\) \(\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2=0\)
Với mọi x, y, z ta luôn có: \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0;\) \(\left(\sqrt{y}-\sqrt{z}\right)^2\ge0;\) \(\left(\sqrt{z}-\sqrt{x}\right)^2\ge0;\)
\(\Rightarrow\) \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)
Do đó dấu "=" xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x}-\sqrt{y}\right)^2=0\\\left(\sqrt{y}-\sqrt{z}\right)^2=0\\\left(\sqrt{z}-\sqrt{x}\right)^2=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\) \(\Leftrightarrow\) x = y = z
3/ Đây là BĐT Cô-si cho 2 số dương a và b, ta biến đổi tương đương để chứng minh
\(a+b\ge2\sqrt{ab}\) \(\Leftrightarrow\) \(\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\) \(\Leftrightarrow\) \(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\) \(a^2+b^2+2ab-4ab\ge0\) \(\Leftrightarrow\) \(a^2-2ab+b^2\ge0\) \(\Leftrightarrow\) \(\left(a-b\right)^2\ge0\)
Đẳng thức xảy ra khi và chỉ khi a = b
2/ Vì x > y và xy = 1 áp dụng BĐT Cô-si ta được:
\(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{1}{x-y}\ge2\sqrt{\left(x-y\right).\frac{1}{x-y}}=2\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x>y\\xy=1\\x-y=\frac{1}{x-y}\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\)
Cho các số dương x,y,z .Chứng minh rằng:
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+yz+xy}\le\frac{x^2+y^2+z^2}{xy+yz+xz}\)
Trích: đề ms thi , thánh nào lớp 9 giúp dùm =="
bài này tao nhớ là đã từng xem qua nhưng h ko nhớ cho rõ nx
Cho các số dương x,y,z . Chứng minh rằng:
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+yz+xy}\le\frac{x^2+y^2+z^2}{xy+yz+xz}\)
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
Cho x+y=2. CMR:\(\frac{2+xy}{2-xy}\le3\)
Cho x+y=2. CMR: \(\frac{2+xy}{2-xy}\le3\)
áp dụng hệ quả bđt côsi xy≤ \(\left(\frac{x+y}{2}\right)^2\) =\(\left(\frac{2}{2}\right)^2\)=1
⇒\(\frac{2+xy}{2-xy}\) ≤\(\frac{2+1}{2-1}\) = 3
dấu =xảy ra khi x=y=1