Chứng minh: Số A = 11n+2 + 122n+1 chia hết cho 133 với \(_{\forall n\in N}\)
Chứng minh rằng với mọi n ∈ N ∗ ta có 11 n + 1 + 12 2 n − 1 chia hết cho 133.
(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
1+2+3+4+5+6+7+8+9=133456 hi hi
đào xuân anh sao mày gi sai hả
???????????????????
Những hằng đẳng thức đáng nhớ (Tiếp 2)
bài 1 cho a+b=1. tính gái trị M = 2(a3+b3) - 3(a3+b3)
bài 2 với n là số tự nhiên cmr
a,11n+2+122n+1(chia hết 133)
b, 5n+2+26.5n+82n+1 (chia hết cho 59)
giúp mình vói mình đang cần gấp
Chứng minh rằng: 11nn+2+122n+1 chia hết cho 133.
Giúp mình với, mình đang cần gấp.
11n + 2 + 122n + 1 = 121 . 11n + 12 . 144n
=(133 – 12) . 11n + 12 . 144n = 133 . 11n + (144n – 11n) . 12
Ta có: 133 . 11n chia hết 133; 144n – 11n chia hết (144 – 11)
144n – 11n chia hết 133 11n + 2 + 122n + 1 chia hết cho 133
chúc bạn học tốt !!!
chứng minh rằng với mọi số nguyên n
a) n2+11n+39 không chia hết cho 49
b) n2+n+1 không chia hết cho 9
a) Em tham khảo tại đây nhé:
Câu hỏi của VRCT_Ran love shinichi - Toán lớp 8 - Học toán với OnlineMath
1:Chứng minh rằng n^2+11n +2 không chia hết cho 12769 với mọi số nguyên n.
đúng theo yeu cau tôi giải cho bạn
gia su A=n^2+11n+2 chia het cho 12769
=> n^2+11n+2=113^2.k
<=>n^2+11n+2-113^2.k=0
=>delta(n,k)=113+4.113^2.k=113.(1+4.113k)=t^2
=>1+4.113k=113p^2=>p^2=4k+1/113=>p khong nguyen=> gs ban dau sai=> dpcm
Chứng minh với mọi số m,n \(\in\)Z, ta có:
a) n3+11n chia hết cho 6
b) mn(m2-n2) chia hết cho 6.
n3 + 11n = n3 - n + 12n = n(n2 - 1) + 12n= (n - 1)n(n + 1) + 12n
Vì n là số nguyên nên (n - 1)n(n + 1) là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6; mà 12 lại chia hết cho 6 => 12n cũng chia hết cho 6.
Vậy (n - 1)n(n + 1) + 12n chia hết cho 6 => n3 + 11n chia hết cho 6 (đpcm)
n 3 + 11n = n 3 ‐ n + 12n = n﴾n 2 ‐ 1﴿ + 12n= ﴾n ‐ 1﴿n﴾n + 1﴿ + 12n
Vì n là số nguyên nên ﴾n ‐ 1﴿n﴾n + 1﴿ là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6
;mà 12 lại chia hết cho 6 => 12n cũng chia hết cho 6
Vậy ﴾n ‐ 1﴿n﴾n + 1﴿ + 12n chia hết cho 6 => n 3 + 11n chia hết cho 6 ﴾đpcm﴿
Tìm giá trị nhỏ nhất của biểu thức:
a) M=5x2+y2-4xy-2x-2y+2027
b) A=x2-4xy+5y2+10x-22y+28
Chứng minh rằng với mọi số nguyên n thì:
a) (n+3)2-(n-1)2 chia hết cho 8
b) n3+11n ⋮ 6 với ∀ n ∈ Z
c) (n+6)2-(n-6)2 chia hết cho 24
Bài 2:
a: =n^2+6n+9-n^2+2n-1
=8n+8
=8(n+1) chia hết cho 8
b: =n^3-n+12n
=n(n-1)(n+1)+12n
Vì n;n-1;n+1 là ba số liên tiếp
nên n(n-1)(n+1) chia hết cho 6
=>A chia hết cho 6
c: =n^2+12n+36-n^2+12n-36=24n chia hết cho 24
Bài 1: Tìm số dư trong phép chia 31996 cho 13
Bài 2: Chứng minh rằng (21996-2) : 31
Bài 3: Chứng minh rằng 0,3(19831983-19171917) là một số nguyên
Bài 4 : Chứng minh rằng :
a) 24n-1 chia hết cho 15 b) 270+370 chia hết cho 13
c) 19801930+19451975+1 chia hết cho 7 d) 122n+1-11n+2 chia hết cho 133
e) 22225555+55552222 chia hết cho 7
g, 6^1001 + 1 chia hết cho 7
Bài 5 : Tìm số dư trong phép chia :
a) Chia 43624362 cho 11 b) Chia 35150 cho 425 c) Chia 8! Cho 11
Bài 6 : Chứng minh rằng : 14k+24k+34k+44k không chia hết cho 5 với mọi k N
Bài 7 : Chứng minh rằng nếu n không chia hết cho 3 thì 32n+3n+1 chia hết cho13