Những câu hỏi liên quan
ND
Xem chi tiết
NN
22 tháng 10 2016 lúc 21:25

Theo đề ra, ta có: \(p,q\ge2\)\(7q+p;pq+11\ge2\)

Xét trường hợp 1: \(7p+q\) hoặc \(pq+11\) là chẵn

=> \(7p+q=2\) hoặc \(pq+11=2\)

=> \(7p=2-q< 2\)(mà \(p\ge2\) => loại) hoặc \(pq=2-11=-9< 0\)(loại)

Xét trường hợp 2: \(7p+q;pq+11\) đều là lẻ.

=> \(pq\) là chẵn => \(p\) hoặc \(q\) chẵn

*) Với \(p\) chẵn =>\(p=2\) => 2 số nguyên tố sẽ là: \(14+q\)\(2q+11\)

+) Xét \(q=3k\Rightarrow k=1\)(do q là số nguyên tố) . Thỏa mãn đề bài => q=3

+) Xét \(q=3k+1\Rightarrow14+q=15+3q⋮3\) mà 14+q>3 => Loại

+) Xét \(q=3k+2\Rightarrow2q+11=6k+15⋮3\) mà 6k+15 >3=> Loại

*) Với \(q\) chẵn => \(q=2\) => 2 số nguyên tố sẽ là: \(7q+2;2p+11\)

+) Xét \(p=3k\Rightarrow k=1\)(Do p là số nguyên tố) => \(p=3\) và nó thỏa mãn đề bài.

+) Xét \(p=3k+1\Rightarrow7p+2=21k+9⋮3\) mà 21k+9>3=> Loại.

+) Xét \(p=3k+2\Rightarrow2p+11=6k+15⋮3\) mà 6k+15> 3 => Loại.

Vậy các cặp số thỏa mãn là \(\left(p;q\right)=\left(2;3\right);\left(3;2\right)\)

 

 

 

 

Bình luận (0)
CS
10 tháng 1 2017 lúc 14:55

các cặp số thỏa mãn là (p;q)=(2;3);(3;2)banh

Bình luận (0)
NA
Xem chi tiết
TH
Xem chi tiết
NM
Xem chi tiết
LK
10 tháng 8 2016 lúc 21:17

Bài này dễ nè :

* xét p và q thuộc dạng : 3k ; 3k + 1 ; 3k+2

rồi thay vào nha

Bình luận (0)
ND
10 tháng 8 2016 lúc 21:19

p = 2; q = 3

Cái này thì mình phải thử, p và q chỉ trong phạm vi 10 thôi.

Bình luận (0)
TA
20 tháng 7 2017 lúc 7:31

dễ thấy pq⋮2pq⋮2

nếu p=2 thì 14+q,2q+1114+q,2q+11 là số nguyên tố
nếu q chia 3 dư 1 thì 14+q chia hết cho 3

nếu q chia 3 dư 2 thì 2q+11 chia hết cho 3

từ đó suy ra q=3

nếu q=2 thì 7p+2 và 2p+11 là số nghuyên tố

tương tự trên ta có p=3

nhớ tk mk nhá

Bình luận (0)
NN
Xem chi tiết
DM
Xem chi tiết
VB
Xem chi tiết
FF
Xem chi tiết

7p + q và pq + 11 đều là số nguyên tố
pq + 11 là số nguyên tố --> pq phải là số chẵn --> hoặc p = 2 hoặc q = 2

** Nếu p = 2 --> 7p + q = 14 + q
ta thấy 14 chia 3 dư 2 ;
+) nếu q chia hết cho 3,q là số nguyên tố --> q = 3
--> 7p + q = 17 --> là số nguyên tố
--> pq + 11 = 17 --> là số nguyên tố --> thỏa

+) nếu q chia 3 dư 1 --> 14 + q chia hết cho 3 --> là hợp số --> loại

+) nếu q chia 3 dư 2 --> 2q chia 3 dư 1 --> pq + 11 = 2q + 11 chia hết cho 3 --> là hợp số --> loại

** Nếu q = 2 --> 7p + q = 2 + 7p
2 chia 3 dư 2 ;

+) nếu 7p chia hết cho 3 --> p chia hết cho 3 --> p = 3
--> 7p + q = 23
--> pq + 11 = 17 --> đều là ố nguyên tố --> thỏa

+) nếu 7p chia 3 dư 1 --> 2 + 7p chia hết cho 3 --> là hợp số --> loại

+) nếu 7p chia 3 dư 2 --> p chia 3 dư 2 --> 2p chia 3 dư 1
--> pq + 11 = 2p + 11 chia hết cho 3 --> là hợp số --> loại

Tóm lại có 2 giá trị của p ; q thỏa mãn là : p = 2 ; q = 3 hoặc p = 3 ; q = 2

Bình luận (0)
 Khách vãng lai đã xóa
BM
Xem chi tiết
ND
6 tháng 3 2024 lúc 16:27

7p + q và pq + 11 đều là số nguyên tố
pq + 11 là số nguyên tố --> pq phải là số chẵn --> hoặc p = 2 hoặc q = 2

** Nếu p = 2 --> 7p + q = 14 + q
ta thấy 14 chia 3 dư 2 ;
+) nếu q chia hết cho 3,q là số nguyên tố --> q = 3
--> 7p + q = 17 --> là số nguyên tố
--> pq + 11 = 17 --> là số nguyên tố --> thỏa

+) nếu q chia 3 dư 1 --> 14 + q chia hết cho 3 --> là hợp số --> loại

+) nếu q chia 3 dư 2 --> 2q chia 3 dư 1 --> pq + 11 = 2q + 11 chia hết cho 3 --> là hợp số --> loại

** Nếu q = 2 --> 7p + q = 2 + 7p
2 chia 3 dư 2 ;

+) nếu 7p chia hết cho 3 --> p chia hết cho 3 --> p = 3
--> 7p + q = 23
--> pq + 11 = 17 --> đều là ố nguyên tố --> thỏa

+) nếu 7p chia 3 dư 1 --> 2 + 7p chia hết cho 3 --> là hợp số --> loại

+) nếu 7p chia 3 dư 2 --> p chia 3 dư 2 --> 2p chia 3 dư 1
--> pq + 11 = 2p + 11 chia hết cho 3 --> là hợp số --> loại

Vậy p = 2 ; q = 3 hoặc p = 3 ; q = 2

Bình luận (0)
HT
11 tháng 9 2024 lúc 22:44

7p + q và pq + 11 đều là số nguyên tố

pq + 11 là số nguyên tố --> pq phải là số chẵn --> hoặc p = 2 hoặc q = 2

 

** Nếu p = 2 --> 7p + q = 14 + q

ta thấy 14 chia 3 dư 2 ;

+) nếu q chia hết cho 3,q là số nguyên tố --> q = 3

--> 7p + q = 17 --> là số nguyên tố

--> pq + 11 = 17 --> là số nguyên tố --> thỏa

 

+) nếu q chia 3 dư 1 --> 14 + q chia hết cho 3 --> là hợp số --> loại

 

+) nếu q chia 3 dư 2 --> 2q chia 3 dư 1 --> pq + 11 = 2q + 11 chia hết cho 3 --> là hợp số --> loại

 

** Nếu q = 2 --> 7p + q = 2 + 7p

2 chia 3 dư 2 ;

 

+) nếu 7p chia hết cho 3 --> p chia hết cho 3 --> p = 3

--> 7p + q = 23

--> pq + 11 = 17 --> đều là ố nguyên tố --> thỏa

 

+) nếu 7p chia 3 dư 1 --> 2 + 7p chia hết cho 3 --> là hợp số --> loại

Ko chắc lắm

+) nếu 7p chia 3 dư 2 --> p chia 3 dư 2 --> 2p chia 3 dư 1

--> pq + 11 = 2p + 11 chia hết cho 3 --> là hợp số --> loại

 

Vậy p = 2 ; q = 3 hoặc p = 3 ; q = 2

Bình luận (0)
NV
25 tháng 9 2024 lúc 21:57

7p + q và pq + 11 đều là số nguyên tố
pq + 11 là số nguyên tố --> pq phải là số chẵn --> hoặc p = 2 hoặc q = 2

** Nếu p = 2 --> 7p + q = 14 + q
ta thấy 14 chia 3 dư 2 ;
+) nếu q chia hết cho 3,q là số nguyên tố --> q = 3
--> 7p + q = 17 --> là số nguyên tố
--> pq + 11 = 17 --> là số nguyên tố --> thỏa

+) nếu q chia 3 dư 1 --> 14 + q chia hết cho 3 --> là hợp số --> loại

+) nếu q chia 3 dư 2 --> 2q chia 3 dư 1 --> pq + 11 = 2q + 11 chia hết cho 3 --> là hợp số --> loại

** Nếu q = 2 --> 7p + q = 2 + 7p
2 chia 3 dư 2 ;

+) nếu 7p chia hết cho 3 --> p chia hết cho 3 --> p = 3
--> 7p + q = 23
--> pq + 11 = 17 --> đều là ố nguyên tố --> thỏa

+) nếu 7p chia 3 dư 1 --> 2 + 7p chia hết cho 3 --> là hợp số --> loại

+) nếu 7p chia 3 dư 2 --> p chia 3 dư 2 --> 2p chia 3 dư 1
--> pq + 11 = 2p + 11 chia hết cho 3 --> là hợp số --> loại

Vậy p = 2 ; q = 3 hoặc p = 3 ; q = 2

Bình luận (0)