Ôn tập toán 6

ND

tìm các số nguyên tố p và q sao cho 7x p +q và p x q +11 đều là số nguyên tố

NN
22 tháng 10 2016 lúc 21:25

Theo đề ra, ta có: \(p,q\ge2\)\(7q+p;pq+11\ge2\)

Xét trường hợp 1: \(7p+q\) hoặc \(pq+11\) là chẵn

=> \(7p+q=2\) hoặc \(pq+11=2\)

=> \(7p=2-q< 2\)(mà \(p\ge2\) => loại) hoặc \(pq=2-11=-9< 0\)(loại)

Xét trường hợp 2: \(7p+q;pq+11\) đều là lẻ.

=> \(pq\) là chẵn => \(p\) hoặc \(q\) chẵn

*) Với \(p\) chẵn =>\(p=2\) => 2 số nguyên tố sẽ là: \(14+q\)\(2q+11\)

+) Xét \(q=3k\Rightarrow k=1\)(do q là số nguyên tố) . Thỏa mãn đề bài => q=3

+) Xét \(q=3k+1\Rightarrow14+q=15+3q⋮3\) mà 14+q>3 => Loại

+) Xét \(q=3k+2\Rightarrow2q+11=6k+15⋮3\) mà 6k+15 >3=> Loại

*) Với \(q\) chẵn => \(q=2\) => 2 số nguyên tố sẽ là: \(7q+2;2p+11\)

+) Xét \(p=3k\Rightarrow k=1\)(Do p là số nguyên tố) => \(p=3\) và nó thỏa mãn đề bài.

+) Xét \(p=3k+1\Rightarrow7p+2=21k+9⋮3\) mà 21k+9>3=> Loại.

+) Xét \(p=3k+2\Rightarrow2p+11=6k+15⋮3\) mà 6k+15> 3 => Loại.

Vậy các cặp số thỏa mãn là \(\left(p;q\right)=\left(2;3\right);\left(3;2\right)\)

 

 

 

 

Bình luận (0)
CS
10 tháng 1 2017 lúc 14:55

các cặp số thỏa mãn là (p;q)=(2;3);(3;2)banh

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TS
Xem chi tiết
NH
Xem chi tiết
PA
Xem chi tiết
HA
Xem chi tiết
NC
Xem chi tiết
NA
Xem chi tiết
PC
Xem chi tiết
NH
Xem chi tiết