Cho ∆QRTđồng dạng ∆KSH theo tỉ số đồng dạng là 2/3thì:
Tỉ số diện tích sKSH/sQRT là:.........
cho ΔABC có điểm M là trung điểm cạnh AC. Trên BM lấy điểm D sao cho DM=2.BM. Tia AD cắt BC tại K, cắt Bx tại E (Bx // AC)
a) tính tỉ số BE/AM
b) ΔBKE đồng dạng ΔCKA theo tỉ số đồng dạng là 1/4
c) tính tỉ số diện tích của ΔABK và ΔABC
∆ABC đồng dạng với ∆DEF theo tỉ số đồng dạng \(k=\dfrac{3}{2}\) Diện tích của ∆ABC là \(27cm^2\), thì diện tích của ∆DEF là:
A. 12cm2B. 24cm2C. 36cm2 D. 48cm2
tam giác abc đồng dạng với tam giác a, b, c, theo tỉ số đồng dạng k bằng 2/7 tỉ số diện tích của tam giác abcd và tam giác a, b, c, là bao nhiêu?
Do tỉ số diện tích bằng bình phương tỉ số đồng dạng nên ta có :
\(\frac{S_{ABC}}{S_{A'B'C'}}=\left(\frac{2}{7}\right)^2=\frac{2^2}{7^2}=\frac{4}{49}\)
Vậy tỉ số diện tích tam giác ABC và tam giác A'B'C' là 4/49
Cho tam giác ABC và tam giác A'B'C' đồng dạng theo tỉ số \(\frac{1}{2}\)và tam giác A'B'C' đồng dạng với tam giác A''B''C'' theo tỉ số \(\frac{1}{3}\).Biết diện tích của tam giác A''B''C'' là 720 cm2. Vậy diện tích tam giác ABC bằng ...
Tam giác ABC đồng dạng với tam giác DEF theo tỉ số đồng dạng là 2 , Tam giác DEF đồng dạng với tam giác MNQ theo tỉ số đồng dạng là 3 . Hỏi tam giác ABC đồng dạng với tam giác DEF theo tỉ số đồng dạng mấy?
Cho hai tam giác MNP và QRS đồng dạng với nhau theo tỉ số k. Tỷ số diện tích của 2 tam giác MNP và QRS là:
A. k
B. 1 k
C. k 2
D. 2k
Giả sử ΔMNP ~ ΔQRS theo tỉ số diện tích S M N P S Q R S = k 2
Đáp án: C
tam giác ABC đồng dạng tam giác DEF theo tỉ số đồng dạng là 2/3
a.Biết chu vi tam giác ABC là 8cm,tính chu vi tam giác DEF
b.Biết diện tích tam giác DEF là 27cm2.tính diện tích tam giác ABC
a) Tam giác ABC đồng dạng với tam giác DEF theo tỉ số đồng dạng 2/3
=> \(\frac{AB}{DE}=\frac{BC}{EF}=\frac{AC}{DF}=\frac{2}{3}\)=> \(\frac{AB}{DE}=\frac{BC}{EF}=\frac{AC}{DF}=\frac{AB+BC+AC}{DE+EF+DF}=\frac{2}{3}\)
=> \(\frac{C_{ABC}}{C_{DEF}}=\frac{2}{3}\) (Kí hiệu \(C\) là chu vi) => \(C_{DEF}=\frac{3}{2}.C_{ABC}=\frac{3}{2}.8=12\) cm
b)
+) Dễ có tam giác DEK đồng dạng với tam giác ABH (do góc DEK = ABH; góc DKE = AHB)
=> \(\frac{AB}{DE}=\frac{AH}{DK}\) Mà \(\frac{AB}{DE}=\frac{2}{3}\Rightarrow\frac{AH}{DK}=\frac{2}{3}\)
+) Có : \(\frac{S_{ABC}}{S_{DEF}}=\frac{\frac{1}{2}.AH.BC}{\frac{1}{2}.DK.EF}=\frac{AH}{DK}.\frac{BC}{EF}=\frac{2}{3}.\frac{2}{3}=\frac{4}{9}\)
=> \(S_{ABC}=\frac{4}{9}.S_{DEF}=\frac{4}{9}.27=12\) cm2
*) Tổng quát: Nếu tam giác ABC đồng dạng với tam giác DEF theo tỉ số đồng dạng k
=> \(\frac{C_{ABC}}{C_{DEF}}=k;\frac{S_{ABC}}{S_{DEF}}=k^2\)
Nếu tam giác ABC đồng dạng với tam giác DEF theo tỉ số đồng dạng là thì tam giác DEF đồng dạng với tam giác ABC theo tỉ số đồng dạng là?
A
B.k = 5
C.k = 2
D.
tam giác ABC ~ tam giác DEF theo tỉ số đồng dạng là k = 2/5
thì tam giác DEF ~ tam giác ABC theo tỉ số đồng dạng là 1/k = 5/2
Trong tam giác vuông tỉ số đồng dạng của 2 tam giác là k . Hỏi tỉ số diện diện tích của 2 tam giác là gì ???
Tỉ số diện tích bằng bình phương tỉ số đồng dạng bạn nhé!