A(x)= 2x2 +1. Chứng tỏ đa thức A(x) vô nghiệm
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho 2 đa thức:
A(x)=x3(x+2)-5x+9+2x3(x-1) và B(x)=2(x2-3x+1)-(3x4+2x2-3x+4)
a) Thu gọn rồi sắp xếp theo lũy thừa tăng dần
b)Tính A(x) + B(x) và A(x) - B(x)
c) Tìm nghiệm của C(x)=A(x)+B(x)
d)Chứng tỏ đa thức H(x)=A(x)+5x vô nghiệm
Giúp em với ạ em đg cần gấp
a)⇔A= x4+2x3-5x+9+2x4-2x3= 3x4-5x+9
⇔B= 2x2-6x+2-3x4-2x2+3x-4= -3x4-3x-2
b)A(x)+B(x)= 3x4-5x+9-3x4-3x-2= -8x+7
A(x)-B(x)= 3x4-5x+9+3x4+3x+2= 6x4-2x+1
c)C(x) có hệ số tự do bằng 0 nên có nghiệm bằng 0
d)A(x)+5x= 3x4+9. Tại x bất kì thì 3x4≥0 ⇔ 3x4+9 ≥ 9 ≥ 0
⇒ H(x) vô nghiệm
a. Tìm nghiệm của đa thức A(x)= 6-2x
b. Cho đa thức P(x)= x4+2x2+1
1. Tính P(1),P= \(\left(\dfrac{-1}{2}\right)\)
2. Chứng tỏ rằng đa thức P(x) không có nghiệm
a) A(x) = 0 ⇔ 6 - 2x = 0 ⇔ x = 3
Nghiệm của đa thức là x = 3
b)1. P(1) = \(1^4+2.1^2+1\) = 4
P(\(-\dfrac{1}{2}\)) = \(\left(-\dfrac{1}{2}\right)^4+2\left(-\dfrac{1}{2}\right)^2+1\) = \(\dfrac{25}{16}\)
Ta có: P(x) = \(\left(x^2+1\right)^2\)
Vì \(\left(x^2+1\right)^2\) ≥ 0
Nên P(x) = 0 khi \(x^2+1=0\) ⇔ \(x^2=-1\) (vô lý)
Vậy P(x) không có nghiệm
a) Đặt A(x)=0
\(\Leftrightarrow6-2x=0\)
\(\Leftrightarrow2x=6\)
hay x=3
Vậy: x=3 là nghiệm của đa thức A(x)
b)
1: Thay x=1 vào đa thức P(x), ta được:
\(P\left(1\right)=1^4+2\cdot1^2+1=1+2+1=4\)
Thay \(x=-\dfrac{1}{2}\) vào đa thức P(x), ta được:
\(P\left(-\dfrac{1}{2}\right)=\left(-\dfrac{1}{2}\right)^4+2\cdot\left(-\dfrac{1}{2}\right)^2+1=\dfrac{1}{16}+\dfrac{1}{2}+1=\dfrac{25}{16}\)
Cho hai đa thức
A ( x ) = x 5 + x 2 + 5 x + 6 - x 5 - 3 x - 5 , B ( x ) = x 4 + 2 x 2 - 3 x - 3 - x 4 - x 2 + 3 x + 4
c. Chứng tỏ rằng x = -1 là nghiệm của A(x) nhưng không là nghiệm của B(x)
c. Thay x = -1 vào A(x) và B(x) ta có:
A(-1) = 0, B(-1) = 2
Vậy x = -1 là nghiệm của A(x) nhưng không là nghiệm của B(x) (1 điểm)
Bài 1. Chứng minh rằng:
a) Chứng tỏ rằng 3/2 và -1/3 là các nghiệm của đa thức P(x)=6x2 -7x- 3
b) Chứng tỏ rằng -1/2 và 3 là các nghiệm của đa thức 2x2 -5x- 3
a: 6x^2-7x-3=0
=>6x^2-9x+2x-3=0
=>(2x-3)(3x+1)=0
=>x=-1/3 hoặc x=3/2
=>ĐPCM
b: 2x^2-5x-3=0
=>2x^2-6x+x-3=0
=>(x-3)(2x+1)=0
=>x=-1/2 hoặc x=3
=>ĐPCM
Chứng tỏ đa thức 2x2 – x + 1 không có nghiệm trên tập hợp R
Đặt 2x^2-x+1=0
Δ=(-1)^2-4*2*1=1-8=-7<0
=>Đa thức vô nghiệm
chứng tỏ các đa thức sau vô nghiệm
a)4x^2 -10x + 9
b)-1 +x -x^2
a) Ta có : \(4x^2-10x+9=0\)
\(\Rightarrow\left(2x\right)^2-2.2x.\frac{5}{2}+\left(\frac{5}{2}\right)^2+\frac{11}{2}=0\)
\(\Rightarrow\left(2x-\frac{5}{2}\right)^2+\frac{11}{2}=0\)(vô lý)
\(\Rightarrow4x^2-10+9\)vô nghiệm(đpcm)
b) Ta có: \(-1+x-x^2=0\)
\(\Rightarrow\left(-1+x-x^2\right).\left(-1\right)=0\)
\(\Rightarrow x^2-x+1=0\)
\(\Rightarrow x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\)(vô lý)
\(\Rightarrow-1+x-x^2\) vô nghiệm(đpcm)
Chứng tỏ đa thức (x-1)^2 +/x-2/ vô nghiệm
(x-1)^2 +/x-2/ =0
=>|x-2|+x2-2x+1=0
=>đa thức vô nghiệm
ta có (x-2)<(x-1)
mà \(\left(x-1\right)^2\) \(\ge\) \(0\)
\(\left|x-2\right|\ge0\)
do x-2<x-1
nên hoặc \(\left(x-1\right)^2>0\) và \(\left|x-2\right|>0\)
hoặc \(\left(x-1\right)^2=0\) và |x-2| >0
hoặc \(\left(x-1\right)^2>0\) và | x-2|=0
nên (x-1)^2 +/x-2/ \(\ne\) 0
vậy đa thức trên vô nghiệm
mk cũng ko bít đúng hay sai lun à. ko đúng đừng có chửi nha, mk làm theo suy nghĩ của mk thui
Ê! Alaude ấy , chả hiểu gì , biến đổi thế thì đã có -2x>0 đâu
Chứng tỏ đa thức M(x)= 2x2+3 không có nghiệm
Ta có 2x2 ≥ 0 với mọi x
➩ 2x2 + 3 ≥ 3
Hay M(x) ≥ 3
Vậy M(x) không có nghiệm
Ta có 2x2≥0 với ∀ x
3>0
=>2x2+3≥3 với ∀ x
=>2x2+3>0 với ∀ x
=>Đa thức 2x2+3 vô nghiệm
Cho hai đa thức: f(x) = 9 -3x5 + 7x - 2x3 +3x5 + x2 – 3x -7x4
g(x) = x4 + 1 + 2x2 +7x4 + 2x3 - 3x- 2x2 - x
a) Thu gọn và sắp xếp các đa thức trên theo luỹ thừa giảm của biến.
b) Tính h(x) = f(x) + g(x)
c) Chứng tỏ đa thức h(x) không có nghiệm
a, \(f\left(x\right)=9-3x^5+7x-2x^3+3x^5+x^2-3x-7x^4=-7x^4-2x^3+x^2+4x+9\)
\(g\left(x\right)=x^4+1+2x^2+7x^4+2x^3-3x-2x^2-x=8x^4+2x^3-4x+1\)
b, Ta có : \(h\left(x\right)=f\left(x\right)+g\left(x\right)=-7x^4-2x^3+x^2+4x+9+8x^4+2x^3-4x+1\)
\(=x^4+x^2+10\)
c, Ta có : \(x^4\ge0\forall x;x^2\ge0\forall x;10>0\Rightarrow x^4+x^2+10>0\)
Vậy phương trình ko có nghiệm ( đpcm )
Kết luận cuối là Vậy đa thức h(x) ko có nghiệm ( đpcm ) nhé