Những câu hỏi liên quan
H24
Xem chi tiết
H24
12 tháng 5 2022 lúc 19:29

`M=-9x^2+6x-3`

`M=-(9x^2-6x+3)`

`M=-(9x^2-6x+1+2)`

`M=-(3x-1)^2-2`

Vì `-(3x-1)^2 <= 0 AA x`

`<=>-(3x-1)^2-2 <= -2 AA x`

  Hay `M <= -2 AA x`

Dấu "`=`" xảy ra `<=>(3x-1)^2=0<=>3x-1=0<=>x=1/3`

Vậy `GTLN` của `M` là `-2` khi `x=1/3`

Bình luận (0)
NT
12 tháng 5 2022 lúc 19:30

\(M=-9x^2+6x-3\)

\(M=-\left(9x^2-6x+3\right)\)

\(M=-\left[\left(3x-1\right)^2+2\right]\)

\(M=-\left(3x-1\right)^2-2\)

\(\Rightarrow Max_M=-2\) khi \(3x-1=0\)

                                 \(\Leftrightarrow x=\dfrac{1}{3}\)

Bình luận (0)
VT
12 tháng 5 2022 lúc 19:31

`-9x^2 + 6x - 3`.

`= -(3x - 1)^2 - 2`.

Vì `(3x-1)^2 >=0 => -(3x-1)^2 <=0 => -(3x-1)^2 - 2 <= -2`

Dấu bằng xảy ra `<=> 3x - 1 = 0 => x = 1/3`.

Vậy `Max_M = -2 <=> x = 1/3`.

Bình luận (0)
DN
Xem chi tiết
DH
26 tháng 6 2021 lúc 17:25

\(A=\frac{5x^2+4x-1}{x^2}=\frac{9x^2-\left(4x^2-4x+1\right)}{x^2}=9-\frac{\left(2x-1\right)^2}{x^2}\le9\)

Dấu \(=\)khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\).

\(B=\frac{x^2}{x^2+x+1}=\frac{3x^2}{3x^2+3x+3}=\frac{4x^2+4x+4-\left(x^2+4x+4\right)}{3x^2+3x+3}=\frac{4}{3}-\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\le\frac{4}{3}\)

Dấu \(=\)khi \(x+2=0\Leftrightarrow x=-2\).

Bình luận (0)
 Khách vãng lai đã xóa
PP
Xem chi tiết
H24
9 tháng 4 2019 lúc 14:20

61/36

Bình luận (0)
NH
9 tháng 4 2019 lúc 14:35

Đặt A=-9x2+5x+1=-(9x2-5x-1)=-[(9x2-2.3.5/6.x+25/36)-1-25/36]=-61/36-(3x-5/6)2

A<=-61/36. Vậy Amax=-61/36 khi 3x-5/6=0 hay x=5/18.

Bình luận (0)
LT
Xem chi tiết
H24
16 tháng 3 2018 lúc 13:05

a) Đặt \(A=10+2x-5x^2\)

\(-A=5x^2-2x-10\)

\(-5A=25x^2-10x-50\)

\(-5A=\left(25x^2-10x+1\right)-51\)

\(-5A=\left(5x-1\right)^2-51\)

Do \(\left(5x-1\right)^2\ge0\forall x\)

\(\Rightarrow-5A\ge-51\)

\(A\le\frac{51}{5}\)

Dấu "=" xảy ra khi : \(5x-1=0\Leftrightarrow x=\frac{1}{5}\)

Vậy Max A = \(\frac{51}{5}\Leftrightarrow x=\frac{1}{5}\)

b) Đặt \(B=x^2-6x+10\)

\(B=\left(x^2-6x+9\right)+1\)

\(B=\left(x-3\right)^2+1\)

Mà \(\left(x-3\right)^2\ge0\forall x\)

\(B\ge1\)

Dấu "=" xảy ra khi :

\(x-3=0\Leftrightarrow x=3\)

Vậy Min B \(=1\Leftrightarrow x=3\)

Bình luận (0)
NL
Xem chi tiết
DH
6 tháng 11 2021 lúc 18:17

a) \(A=6x-x^2-11=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\)

Dấu \(=\)khi \(x-3=0\Leftrightarrow x=3\).

b) \(B=x^2-5x-2=x^2-2.\frac{5}{2}x+\left(\frac{5}{2}\right)^2-\frac{33}{4}=\left(x-\frac{5}{2}\right)^2-\frac{33}{4}\ge-\frac{33}{44}\)

Dấu \(=\)khi \(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\).

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
5 tháng 10 2018 lúc 9:56

Bình luận (0)
PN
Xem chi tiết
H24
16 tháng 8 2016 lúc 21:08

khó hiểu quá 

Bình luận (0)
PN
16 tháng 8 2016 lúc 21:10

bn giải giúp mình đi

Bình luận (0)
NA
17 tháng 8 2016 lúc 8:54

1)   P = \(3+15x-5x^2\)\(=-5x^2+15x+3=-5\left(x^2-3x-\frac{3}{5}\right)\)  \(=-5\left(x^2-2.\frac{3}{2}.x+\frac{9}{4}-\frac{9}{4}-\frac{3}{5}\right)\)\(-5\left[\left(x-\frac{3}{2}\right)^2-\frac{57}{20}\right]=-5.\left(x-\frac{3}{2}\right)^2+\frac{57}{4}\)

vì \(\left(x-\frac{3}{2}\right)^2>=0\) => \(-5.\left(x-\frac{3}{2}\right)^2+\frac{57}{4}>=0\)  =>\(-5.\left(x-\frac{3}{2}\right)^2+\frac{57}{4}>=\frac{57}{4}\)

 => GTLN  của P là \(\frac{57}{4}\)tại x =\(\frac{3}{2}\)

2) GTNN của B là -36

Bình luận (0)
HP
Xem chi tiết
NL
Xem chi tiết
YN
6 tháng 11 2021 lúc 20:52

a) \(6x-x^2-11\)

\(=-x^2+6x-11\)

\(=-\left(x^2-6x+11\right)\)

\(=-\left(x^2-6x+9+2\right)\)

\(=-[\left(x-3\right)^2+2]\)

Mà: \(\left(x-3\right)^2\ge0\)

\(\Rightarrow-\left(x-3\right)^2\le0\)

\(\Rightarrow-\left(x-3\right)^2-2\le0-2\)

\(\Rightarrow A\le-2\)

Dấu '' = '' xảy ra khi: \(\left(x-3\right)^2=0\Rightarrow x=3\)

Vậy giá trị lớn nhất của biểu thức \(6x-x^2-11=-2\) khi \(x=3\)

b) \(x^2-5x-2\)

\(=\left(x^2-2.\frac{5}{2}x+\frac{25}{4}\right)-\frac{33}{4}\)

\(=\left(x-\frac{5}{2}\right)^2-\frac{33}{4}\)

Mà: \(\left(x-\frac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{5}{2}\right)^2-\frac{33}{4}\ge\frac{-33}{4}\forall x\)

Dấu '' = '' xảy ra khi: \(x-\frac{5}{2}=0\Rightarrow x=\frac{5}{2}\)

Vậy giá trị nhỏ nhất của biểu thức \(x^2-5x-2=\frac{-33}{4}\)  khi \(x=\frac{5}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
QT
Xem chi tiết
ND
9 tháng 2 2023 lúc 20:34

Ta có : \(P\text{=}\dfrac{5x-9}{x-3}\text{=}\dfrac{5x-15+6}{x-3}\)

\(\Rightarrow P\text{=}\dfrac{5x-15}{x-3}+\dfrac{6}{x-3}\)

\(\Rightarrow P\text{=}\dfrac{5\left(x-3\right)}{x-3}+\dfrac{6}{x-3}\text{=}\dfrac{6}{x-3}+5\)

\(\Rightarrow P_{max}\Leftrightarrow x-3\text{=}1\Leftrightarrow x\text{=}4\)

\(\Rightarrow P_{max}\text{=}9\Leftrightarrow x\text{=}4\)

\(\Rightarrow P_{min}\Leftrightarrow x-3\text{=}-1\Leftrightarrow x\text{=}2\)

\(\Rightarrow P_{min}\text{=}-1\Leftrightarrow x\text{=}2\)

Bình luận (0)