Những câu hỏi liên quan
NP
Xem chi tiết
VT
11 tháng 8 2016 lúc 9:57

\(\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{49.51}\)

\(=\frac{1}{2}.\left(\frac{2}{5}.7+\frac{2}{7}.9+\frac{2}{9}.11+...+\frac{2}{49}.51\right)\)

\(=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-...+\frac{1}{49}-\frac{1}{51}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{51}\right)\)

\(=\frac{1}{2}.\frac{46}{255}\)

\(=\frac{23}{255}\)

Bình luận (0)
NL
11 tháng 8 2016 lúc 10:00

\(\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{49.51}\)

\(\Rightarrow2 \left(\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{49.51}\right)\)

\(\Rightarrow\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{49}-\frac{1}{51}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{51}=\frac{46}{255}\)

Vì biểu thức đã được nhân 2 nên giá trị của biểu thức là:

\(\frac{46}{255}:2=\frac{23}{255}\)

Bình luận (0)
LF
11 tháng 8 2016 lúc 10:13

\(\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{49.51}\)

\(=\frac{1}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{49.51}\right)\)

\(=\frac{1}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(=\frac{1}{2}\left(\frac{1}{5}-\frac{1}{51}\right)\)

\(=\frac{1}{2}\cdot\frac{46}{255}\)

\(=\frac{23}{255}\)

 

Bình luận (0)
H24
Xem chi tiết
SN
4 tháng 6 2015 lúc 15:09

\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)\)

\(=\frac{1}{2}.\frac{16}{51}=\frac{8}{51}\)

Bình luận (0)
DV
4 tháng 6 2015 lúc 15:09

\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)=\frac{1}{2}.\frac{16}{51}=\frac{8}{51}\)

Bình luận (0)
NT
Xem chi tiết
GC
25 tháng 5 2015 lúc 19:51

NHẦM GIẢI LẠI :

\(A=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)=\frac{3}{2}.\frac{16}{51}=\frac{8}{17}\)

Bình luận (0)
H24
Xem chi tiết
DH
Xem chi tiết
SG
11 tháng 8 2016 lúc 9:49

1/5.7 + 1/7.9 + 1/9.11 + ... + 1/49.51

= 1/2 . (2/5.7 + 2/7.9 + 2/9.11 + ... + 2/49.51)

= 1/2 . (1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 + ... + 1/49 - 1/51)

= 1/2 . (1/5 - 1/51)

= 1/2 . 46/255

= 23/255

Bình luận (0)
NK
11 tháng 8 2016 lúc 9:49

S = \(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...\frac{1}{49}-\frac{1}{51}\)

S = \(\frac{1}{5}-\frac{1}{51}=\frac{46}{255}\)

Bình luận (0)
AH
11 tháng 8 2016 lúc 9:51

Đặt \(A=\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{49.51}\)

\(A.2=\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{49.51}\)

\(A.2=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{49}-\frac{1}{51}\)

\(A.2=\frac{1}{5}-\frac{1}{51}\)

\(A.2=\frac{46}{255}\)

\(A=\frac{23}{255}\)

Bình luận (0)
KV
Xem chi tiết
KM
1 tháng 3 2018 lúc 19:04

a, Ta có \(A=\frac{3}{3.5}+\frac{3}{5.7}+....+\frac{3}{49.51}\)

\(=\frac{3}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{49.51}\right)\)

\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{49}-\frac{1}{51}\right)\)

\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)\)

\(=\frac{1}{2}-\frac{3}{102}=\frac{48}{102}=\frac{24}{51}\)

b,Ta có \(\frac{1}{2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}\)

\(=\frac{2-1}{2}+\frac{4-2}{2.4}+\frac{7-4}{4.7}+\frac{11-7}{7.11}+\frac{16-11}{11.16}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}\)

\(=\frac{15}{16}\)

Bình luận (0)
HH
1 tháng 3 2018 lúc 18:57

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!1111

Bình luận (0)
PQ
1 tháng 3 2018 lúc 19:41

\(a)\) \(A=\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{49.51}\)

\(A=3\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{49.50}\right)\)

\(2A=3\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{49.50}\right)\)

\(2A-A=3\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(A=3\left(\frac{1}{3}-\frac{1}{50}\right)\)

\(A=1-\frac{3}{50}\)

\(A=\frac{47}{50}\)

Vậy \(A=\frac{47}{50}\)

\(b)\) \(B=\frac{1}{2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}\)

\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}\)

\(B=1-\frac{1}{16}\)

\(B=\frac{15}{16}\)

Vậy \(B=\frac{15}{16}\)

Chúc bạn học tốt ~

Bình luận (0)
QW
Xem chi tiết
QW
9 tháng 4 2016 lúc 11:26

C=\(\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{775}+\frac{1}{1147}\)

C=\(\frac{1}{6}\left\{\frac{6}{1.7}+\frac{6}{7.13}+\frac{6}{13.19}+...+\frac{6}{31.37}\right\}\)=\(\frac{1}{6}\left(1-\frac{1}{7}+\frac{1}{7}+....+\frac{1}{31}-\frac{1}{37}\right)\)

C=\(\frac{1}{6}\left(1-\frac{1}{37}\right)=\frac{1}{6}.\frac{36}{37}=\frac{36}{222}=\frac{6}{37}\)

D=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+......+\frac{3}{49.51}\)

D=\(\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{49.51}\right)\)

D=\(\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

D=\(\frac{3}{2}\left(1-\frac{1}{51}\right)=\frac{3}{2}.\frac{50}{51}\)

D=\(\frac{150}{102}\)=\(\frac{25}{17}\)

Bình luận (0)
BA
Xem chi tiết
IY
26 tháng 8 2018 lúc 21:05

a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}.\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

b) \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{35.37}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{35}-\frac{1}{37}\)

\(=\frac{1}{3}-\frac{1}{37}=\frac{34}{111}\)

Bình luận (0)
IY
26 tháng 8 2018 lúc 21:06

c) \(\frac{7}{7.9}+\frac{7}{9.11}+\frac{7}{11.13}+...+\frac{7}{99.101}\)

\(=\frac{7}{2}.\left(\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{7}{2}.\left(\frac{1}{7}-\frac{1}{101}\right)=\frac{7}{2}\cdot\frac{94}{707}=\frac{47}{101}\)

Bình luận (0)
H24
26 tháng 7 2020 lúc 9:20

a) 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/99.100

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/99 - 1/100

= 1 - 1/100

= 99/100

b) 2/3.5 + 2/5.7 + 2/7.9 + ... + 2/35.37

= 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/35 - 1/37

= 1 - 1/37

= 36/37

c) 7/7.9 + 7/9.11 + 7/11.13 + ... + 7/99.101

= 7/2.(1/7 - 1/9 + 1/9 - 1/11 + 1/11 - 1/13 + ... + 1/99 - 1/101)

= 7/2.(1/7 - 1/101)

= 7/2.94/707

= 47/101

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết
PT
27 tháng 2 2015 lúc 20:38

a,Gọi tổng trên là A.

Xét \(\frac{4}{5}-\frac{4}{7}=\frac{8}{35};...;\frac{4}{59}-\frac{4}{61}=\frac{8}{3599}\)=>\(A=\frac{1}{2}.\left(\frac{4}{5}-\frac{4}{7}+\frac{4}{7}-\frac{4}{9}+...+\frac{4}{59}-\frac{4}{61}\right)\)\(=\frac{1}{2}.\left(\frac{4}{5}-\frac{4}{61}\right)=\frac{1}{2}.\frac{224}{305}=\frac{112}{305}\)

b,Gọi tổng trên là B

Theo đề bài ta có:\(B=\frac{24.47-23}{24+47.23}.\frac{3+\frac{3}{7}-\frac{3}{11}+\frac{3}{1001}-\frac{3}{13}}{\frac{9}{1001}-\frac{9}{13}+\frac{9}{7}-\frac{9}{11}+9}\)=\(\frac{\left(23+1\right).47-23}{24+47.23}.\frac{3+\frac{3}{7}-\frac{3}{11}+\frac{3}{1001}-\frac{3}{13}}{\frac{9}{1001}-\frac{9}{13}+\frac{9}{7}-\frac{9}{11}+9}=\frac{47.23+24}{24+47.23}.\frac{3.\left(1+\frac{1}{7}-\frac{1}{11}+\frac{1}{1001}-\frac{1}{13}\right)}{3.\left(3+\frac{3}{1001}-\frac{3}{13}+\frac{3}{7}-\frac{3}{11}\right)}\)\(=\frac{1+\frac{1}{1001}-\frac{1}{13}+\frac{1}{7}-\frac{1}{11}}{3+\frac{3}{1001}-\frac{3}{13}+\frac{3}{7}-\frac{3}{11}}=\frac{1+\frac{1}{1001}-\frac{1}{13}+\frac{1}{7}-\frac{1}{11}}{3.\left(1+\frac{1}{1001}-\frac{1}{13}+\frac{1}{7}-\frac{1}{11}\right)}=\frac{1}{3}\)

Bình luận (0)
LA
29 tháng 2 2016 lúc 19:39

\(2\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)

\(=2\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)\)

\(=2\left(\frac{1}{5}-\frac{1}{61}\right)=2\left(\frac{61-5}{305}\right)=2.\frac{56}{305}=\frac{112}{305}\)

Bình luận (0)
PN
21 tháng 2 2017 lúc 16:35

Đặt A=B*C

B=\(\frac{24\cdot47-23}{24+47-23}=\frac{1128-23}{71-23}=\frac{1105}{48}\)

C=\(\frac{3\cdot\left(1+\frac{1}{7}-\frac{1}{11}+\frac{1}{1001}-\frac{1}{13}\right)}{9\cdot\left(\frac{1}{1001}-\frac{1}{13}+\frac{1}{7}-\frac{1}{11}+1\right)}=\frac{1}{3}\)

Suy ra A =\(\frac{1105}{144}\)

Bình luận (0)