Những câu hỏi liên quan
TB
Xem chi tiết
TD
23 tháng 12 2016 lúc 20:34

Mình gợi ý phần đầu nè. Xét \(x=0\) riêng được \(y=0\) hoặc \(y=1\).

Xét \(x\ne0\). Khi đó  \(x\) và \(x^2+x+1\) nguyên tố cùng nhau với mọi \(x\) nguyên khác 0.

(Ở đây ta chỉ định nghĩa 2 số nguyên tố cùng nhau là 2 số có ước chung lớn nhất là 1 nên số âm vẫn được).

Để CM điều này ta gọi \(d=gcd\left(x^2+x+1,x\right)\) thì \(1⋮d\).

Vế trái là một số chia hết cho 4 nên trong 2 số \(x\) và \(x^2+x+1\) phải có một số chia hết cho 4

(Nếu mỗi số đều chia hết cho 2 thì không thể nguyên tố cùng nhau)

Trường hợp 1: \(x⋮4\) còn \(x^2+x+1\) lẻ.

Do \(y\) và \(y-1\) có 1 số chẵn và 1 số lẻ nên số chẵn sẽ là ước của \(x\) còn số lẻ là ước của \(x^2+x+1\).

Tức là có 2 trường hợp: \(x=4y\) và \(x=4\left(y-1\right)\).

Trường hợp 2 ngược lại.

Tới đây bạn tự giải được nha.

Bình luận (0)
KL
23 tháng 12 2016 lúc 12:38

\(x\left[1+x+x^2\right]=4y\left[y-1\right]\)

\(\Leftrightarrow x^3+x^2-4y^2+x+4y=0\)

\(\Leftrightarrow x^2\left[x+1\right]+x-4y^2+4y=0\)

\(\Leftrightarrow\Delta=b^2-4ac=1-16xy+16xy^2-16y+16y^2\)

\(\Rightarrow\orbr{\begin{cases}x1=\frac{-1+\sqrt{1-16xy+16xy^2-16y+16y^2}}{2x+2}\\x2=\frac{-1-\sqrt{1-16xy+16xy^2-16y+16y^2}}{2x+2}\end{cases}}\)

đến đây tự làm tiếp nhé

Bình luận (0)
PN
6 tháng 3 2018 lúc 20:20

Có:

                                                      (1)

, nên từ  và  chẵn.

Giả sử   lẻ và  

 là số chính phương,  nên  cũng là hai số chính phương.

Do  

Khi , có .

Vậy có hai cặp số nguyên thỏa mãn yêu cầu bài toán là:

Bình luận (0)
BY
Xem chi tiết
DH
16 tháng 5 2021 lúc 14:55

\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)

\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y\right)=3+2\left(x+y+1\right)\)

\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y-2\right)=3\)

Từ đây bạn xét các trường hợp và giải ra nghiệm. 

Bình luận (0)
 Khách vãng lai đã xóa
KG
Xem chi tiết
NT
17 tháng 8 2023 lúc 13:29

\(x^2-25=y\left(y+6\right)\)

\(\Leftrightarrow x^2-25=y^2+6y\)

\(\Leftrightarrow x^2-25-y^2-6y=0\)

\(\Leftrightarrow x^2-\left(y^2+6y+9\right)-16=0\)

\(\Leftrightarrow x^2-\left(y+3\right)^2=16\)

\(\Leftrightarrow\left(x+y+3\right)\left(x-y-3\right)=16\)

\(\Leftrightarrow\left(x+y+3\right);\left(x-y-3\right)\in\left\{-1;1;-2;2;-4;4;-8;8;-16;16\right\}\)

Ta giải các hệ phương trình sau :

1) \(\left\{{}\begin{matrix}x+y+3=-1\\x-y-3=-16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-4\\x-y=-15\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x=-11\left(loại\right)\\x-y=-15\end{matrix}\right.\)

2) \(\left\{{}\begin{matrix}x+y+3=1\\x-y-3=16\end{matrix}\right.\)  \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-2\\x-y=19\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=17\left(loại\right)\\x-y=19\end{matrix}\right.\)

3) \(\left\{{}\begin{matrix}x+y+3=2\\x-y-3=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x-y=11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=10\\x-y=11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=-6\end{matrix}\right.\)

4) \(\left\{{}\begin{matrix}x+y+3=-2\\x-y-3=-8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-5\\x-y=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-10\\x-y=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=0\end{matrix}\right.\)

5) \(\left\{{}\begin{matrix}x+y+3=-4\\x-y-3=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-7\\x-y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-6\\x-y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)

6) \(\left\{{}\begin{matrix}x+y+3=4\\x-y-3=4\end{matrix}\right.\)  \(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\x-y=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=8\\x-y=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-3\end{matrix}\right.\)

7) \(\left\{{}\begin{matrix}x+y+3=-8\\x-y-3=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-11\\x-y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-10\\x-y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=-6\end{matrix}\right.\)

8) \(\left\{{}\begin{matrix}x+y+3=8\\x-y-3=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=5\\x-y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=10\\x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=0\end{matrix}\right.\)

9) \(\left\{{}\begin{matrix}x+y+3=-16\\x-y-3=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-19\\x-y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-17\left(loại\right)\\x-y=2\end{matrix}\right.\)

10) \(\left\{{}\begin{matrix}x+y+3=16\\x-y-3=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=15\\x-y=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=19\left(loại\right)\\x-y=4\end{matrix}\right.\)

Vậy \(\left(x;y\right)\in\left\{\left(5;-6\right);\left(-5;0\right);\left(-3;-2\right);\left(4;-3\right);\left(-5;-6\right);\left(5;0\right)\right\}\)

Bình luận (0)
KK
Xem chi tiết
TD
30 tháng 10 2019 lúc 19:38

Nguyễn Linh Chi : cô làm cách đó là thiếu nghiệm rồi cô

\(\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)

\(\Leftrightarrow x^4+x^2+x^2y^2+y^2-4x^2y=0\)

\(\Leftrightarrow\left(x^4-2x^2y+y^2\right)+\left(x^2-2x^2y+x^2y^2\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)^2+\left(x\left(y-1\right)\right)^2=0\)

\(\Leftrightarrow x^2-y=x\left(y-1\right)=0\)

\(\Leftrightarrow x^2-y-xy+x=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=-1\end{cases}}\)

+) x = -1 suy ra y = 1

+) x = y . từ đó tìm được \(\orbr{\begin{cases}x=y=0\\x=y=1\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
TD
30 tháng 10 2019 lúc 20:54

ai tích mình sai vậy ạ, xin lí do

Bình luận (0)
 Khách vãng lai đã xóa
PQ
31 tháng 10 2019 lúc 5:03

làm cách đó xét nghiệm cũng đủ mà \(\hept{\begin{cases}x^2=1\\x^2=y^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\x=\pm y\end{cases}}\Rightarrow y=\pm1\Rightarrow\orbr{\begin{cases}x=y=0\\x=y=1\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
HT
18 tháng 9 2021 lúc 18:21

Ta có \(y\left(x-1\right)=x^2+2\)

\(\Leftrightarrow y\left(x-1\right)-x^2=2\)

\(\Leftrightarrow y\left(x-1\right)-x^2+1=3\)

\(\Leftrightarrow y\left(x-1\right)-\left(x^2-1\right)=3\)

\(\Leftrightarrow y\left(x-1\right)-\left(x-1\right)\left(x+1\right)=3\)

\(\Leftrightarrow\left(x-1\right)\left(y-x-1\right)=3\)

Vì x,y nguyên nên ta có bảng

x-1   3  1    -1   -3
y-x-1   1   3    -3    -1
x   4  2     0    -2
y   6  8    2   4

Vậy\(\left(x,y\right)=\left\{\left(4,6\right),\left(2,8\right),\left(0,2\right),\left(-2,4\right)\right\}\)thỏa mãn

 

Bình luận (1)
LL
18 tháng 9 2021 lúc 18:22

\(y\left(x-1\right)=x^2+2\)

\(\Leftrightarrow x^2-xy+y+2=0\)

\(\Leftrightarrow x\left(x-1\right)-y\left(x-1\right)+\left(x-1\right)+3=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-y+1\right)=-3\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1=-1\\x-y+1=3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=3\\x-y+1=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=1\\x-y+1=-3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=-3\\x-y+1=1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=-2\end{matrix}\right.\end{matrix}\right.\)

Vậy \(\left(x;y\right)\in\left\{\left(0;-2\right),\left(4;6\right),\left(2;6\right),\left(-2;-2\right)\right\}\)

 

Bình luận (1)
HT
Xem chi tiết

\(\left(x^2-x+1\right)\left(xy+y^2\right)=3x-1\left(1\right)\)

\(3x-1⋮x^2-x+1\)

zì \(lim\left(x\rightarrow\infty\right)\frac{3x-1}{x^2-x+1}=0\)

zà thấy x=2 thỏa mãn ,=> x=1

thay zô 1 ta có

\(1\left(y+y^2\right)=2=>y^2+y-2=0=>\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)

zậy \(\left(x,y\right)\in\left\{\left(1,1\right)\left(1,-2\right)\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
NK
Xem chi tiết
H24
9 tháng 11 2024 lúc 21:29

bài này sẽ giải nếu x,y là số nguyên

ĐKXĐ: x≠2

A=\(\dfrac{3\left(x++y\right)\left(x-2\right)+1}{x-2}\)

A=\(\dfrac{3\left(x+y\right)\left(x-2\right)}{x-2}+\dfrac{1}{x-2}\)

A=3(x+y)+\(\dfrac{1}{x-2}\)

Vì x;y; A là số nguyên nên \(\dfrac{1}{x-2}\) cũng là số nguyên

hay x-2⋮1

hay x-2ϵƯ(1)=(-1;1)

suy ra x=1;3

tự tìm y

 

Bình luận (0)
LA
Xem chi tiết
HV
3 tháng 1 2020 lúc 23:35

Ta có \(\left(x+y\right)^3=\left(x-y-6\right)^2\left(1\right)\)

Vì x,y nguyên dương nên

\(\left(x+y\right)^3>\left(x+y\right)^2\)kết hợp (1) ta được:

\(\left(x-y-6\right)^2>\left(x+y\right)^2\Leftrightarrow\left(x+y\right)^2-\left(x-y-6\right)^2< 0\Leftrightarrow\left(x-3\right)\left(y+3\right)< 0\)

Mà y+3 >0 (do y>0)\(\Rightarrow x-3< 0\Leftrightarrow x< 3\)

mà \(x\inℤ^+\)\(\Rightarrow x\in\left\{1;2\right\}\)

*x=1 thay vào (1) ta có:

\(\left(1+y\right)^3=\left(1-y-6\right)^2\Leftrightarrow y^3+3y^2+3y+1=y^2+10y+25\Leftrightarrow\left(y-3\right)\left(y^2+5y+8\right)=0\)

mà \(y^2+5y+8=\left(y+\frac{5}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)

\(\Rightarrow y-3=0\Leftrightarrow y=3\inℤ^+\)

*y=2 thay vào (1) ta được: 

\(\left(2+y\right)^3=\left(2-y-6\right)^2\Leftrightarrow y^3+6y^2+12y+8=y^2+8y+16\Leftrightarrow y^3+5y^2+4y-8=0\)

Sau đó cm pt trên không có nghiệm nguyên dương.

Vậy x=1;y=3

Bình luận (0)
 Khách vãng lai đã xóa
LA
Xem chi tiết
LD
6 tháng 12 2020 lúc 20:00

Bài làm

Ta có : y( x - 1 ) = x2 + 2

<=> x2 + 2 - y( x - 1 ) = 0

<=> x2 - x + x - 1 + 3 - y( x - 1 ) = 0

<=> x( x - 1 ) + ( x - 1 ) - y( x - 1 ) + 3 = 0

<=> ( x - 1 )( x - y + 1 ) = -3

Vì x, y ∈ Z => \(\hept{\begin{cases}x-1\inℤ\\x-y+1\inℤ\end{cases}}\)

Lại có \(-3=\hept{\begin{cases}-1\cdot3\\-3\cdot1\end{cases}}\)

=> Ta có bảng sau :

x-11-13-3
x-y+1-33-11
x204-2
y6-26-2

Tất cả các giá trị trên đều thỏa x, y ∈ Z

Vậy ( x ; y ) = { ( 2 ; 6 ) , ( 0 ; -2 ) , ( 4 ; 6 ) , ( -2 ; -2 ) }

Bình luận (0)
 Khách vãng lai đã xóa
XO
6 tháng 12 2020 lúc 20:04

y(x - 1) = x2 + 2 

=> y(x - 1) - x2 - 2 = 0

=> y(x - 1) - x2 + 1 = 3

=> y(x - 1) - (x2 - 1) = 3

=> y(x - 1) - (x - 1)(x + 1) = 3

=> (x - 1)(y - x - 1) = 3

Ta có 3 = 1.3 = (-1).(-3)

Lập bảng xét các trường hợp

x - 113-1-3
y - x - 131-3-1
x240-2
y66-2-2

Vậy các cặp số (x;y) thỏa mãn là (2;6) ; (4;6) ; (0;-2) ; (-2;-2)

Bình luận (0)
 Khách vãng lai đã xóa
MD
Xem chi tiết