Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PD
Xem chi tiết
CC
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
NA
Xem chi tiết
AS
30 tháng 4 2016 lúc 8:49

\(\frac{1}{1}+\frac{1}{1}+\frac{1}{1}=1\)

Bình luận (0)
TH
30 tháng 4 2016 lúc 8:53

\(\frac{1}{1}+\frac{1}{1}+\frac{1}{1}=1\)

Bình luận (0)
CN
30 tháng 4 2016 lúc 8:55

1/2 + 1/3 + 1/6 =1

Kích nha

Bình luận (0)
YH
Xem chi tiết
H24

Ta thấy a, b, c, d > 1 vì nếu một số bằng 1 thì tổng lớn hơn 1 

Nếu trong 4 số a, b, c, d có ít nhất 1 số lớn hơn 2 thì tổng đã cho có GTLN là :

\(\frac{1}{2\cdot2}+\frac{1}{2\cdot2}+\frac{1}{2\cdot2}+\frac{1}{3\cdot3}< \frac{1}{4}\cdot4=1\)

Do đó a, b, c, d < 3 

Vậy a = b = c = d = 2, ta có :

\(\frac{1}{2\cdot2}+\frac{1}{2\cdot2}+\frac{1}{2\cdot2}+\frac{1}{2\cdot2}=1\) ( đúng )

Cbht

Bình luận (0)
H24
13 tháng 7 2019 lúc 17:25

\(\text{= 1}\)

\(\frac{1}{aa}+\frac{1}{bb}+\frac{1}{cc}+\frac{1}{dd}\)\(=1\)

\(\frac{1}{2.2}+\frac{1}{2.2}+\frac{1}{2.2}+\frac{1}{2.2}\)=  1

\(4.\frac{1}{4}=1\)

vậy     {a ,b ,c ,d} =2

\(\frac{1}{aa}+\frac{1}{bb}+\frac{1}{cc}+\frac{1}{dd}\)\(=1\)

Bình luận (0)
H24
Xem chi tiết
TM
22 tháng 2 2020 lúc 17:22

ĐKXĐ: \(a\ne0,a+b\ne0,a+b+c\ne0\)

do a,b,c là các số tự nhiên => \(\frac{1}{a}\ge\frac{1}{a+b};\frac{1}{a}\ge\frac{1}{a+b+c}\)

=>\(\frac{1}{a}+\frac{1}{a+b}+\frac{1}{a+b+c}=1\le\frac{1}{a}+\frac{1}{a}+\frac{1}{a}=\frac{3}{a}\)

=>\(0< a\le3\)

Sau đó bạn xét từng trường hợp a=1,2,3 để giải pt nghiệm nguyên tìm b,c là xong nhé

Bình luận (0)
 Khách vãng lai đã xóa
NC
28 tháng 2 2020 lúc 15:05

làm tiếp:

Với a, b, c là số tự nhiên

Th1:   a = 1 ta có: \(\frac{1}{1}+\frac{1}{1+b}+\frac{1}{1+b+c}=1\)

<=> \(\frac{1}{1+b}+\frac{1}{1+b+c}=0\)loại vì 1 + b; 1 + b + c >0

TH2:  a = 2 ta có: \(\frac{1}{2}+\frac{1}{2+b}+\frac{1}{2+b+c}=1\)

<=> \(\frac{1}{2+b}+\frac{1}{2+b+c}=\frac{1}{2}\)

=> \(\frac{1}{2}\le\frac{1}{2+b}+\frac{1}{2+b}=\frac{2}{2+b}\)

=> \(b\le2\)

+) Với b = 0 => \(\frac{1}{2}+\frac{1}{2+c}=\frac{1}{2}\)loại

+) Với b = 1 => \(\frac{1}{3}+\frac{1}{3+c}=\frac{1}{2}\)<=>  c = 3 (tm )

+) Với b = 2 => \(\frac{1}{4}+\frac{1}{4+c}=\frac{1}{2}\)<=> c = 0 (tm)

TH3: a = 3 ta có: \(\frac{1}{3}+\frac{1}{3+b}+\frac{1}{3+b+c}=1\)

<=> \(\frac{1}{3+b}+\frac{1}{3+b+c}=\frac{2}{3}\)

=> \(\frac{2}{3}\le\frac{1}{3+b}+\frac{1}{3+b}=\frac{2}{3+b}\)

=> b = 0 => c = 0 

Vậy bộ 3 số tự nhiên là: (3; 0; 0) ; ( 2; 1; 3) ; (2; 2; 0)

Bình luận (0)
 Khách vãng lai đã xóa
ND
29 tháng 3 2020 lúc 19:07

bai nay de the cac ban 

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TH
1 tháng 5 2021 lúc 13:45

như trên

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết