Những câu hỏi liên quan
CT
Xem chi tiết
BT
Xem chi tiết
TV
13 tháng 3 2018 lúc 23:23

6(3a-2b)=10(2c-5a)=15(5b-3c) suy ra 

Bình luận (0)
H24
15 tháng 3 2018 lúc 6:02

\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
\(\Rightarrow\frac{5\left(3a-2b\right)}{25}=\frac{3\left(2c-5a\right)}{9}=\frac{2\left(5b-3c\right)}{4}\)

\(\Rightarrow\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}=\frac{0}{25+9+4}=0\)

\(\Rightarrow\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{a}{2}=\frac{c}{5}\\\frac{b}{3}=\frac{c}{5}\end{cases}}\Leftrightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau.........

Bình luận (0)
TT
9 tháng 12 2018 lúc 6:28

Trả lời tiếp theo bạn Trương Thúy Vy:

a+b+c/10 = - 50/10 = -5

a/2 = b/3 = c/5 = -5

Suy ra: a= -10, b= -15, c= -25

Bình luận (0)
Xem chi tiết
DC

Có \(\frac{3a-2b}{5}=\frac{6a-4b}{10}\) 

Bình luận (0)
 Khách vãng lai đã xóa
DT

rồi sao nữa bạn.

Bình luận (0)
 Khách vãng lai đã xóa
DC

Thấy đề sai sai , nếu áp dụng dãy tỉ số = nhau thì còn mỗi \(\frac{a+b}{15}\) mà đề cho a+b+c chứ không phải a + b nên vẫn chịu

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
PD
Xem chi tiết
PK
9 tháng 6 2016 lúc 10:49

Hỏi đáp Toán

Bình luận (3)
DV
9 tháng 6 2016 lúc 10:49

Theo dãy tỉ số bằng nhau \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}=\frac{5\left(3a-2b\right)+3\left(2c-5a\right)}{5.5+3.3}=\frac{-10b+6c}{34}=\frac{-5b+3c}{17}\)

\(\Rightarrow\frac{5b-3c}{2}=\frac{-5b+3c}{17}=\frac{5b-3c}{17}\) <=> 5b - 3c = 0 => \(b=\frac{3}{5}c;a=\frac{2}{5}c\)

Lại có a + b + c = -50 => \(\frac{2}{5}c+\frac{3}{5}c+c=-50\) => 2c = -50 => c = -25

Do đó \(a=\frac{2}{5}.\left(-25\right)=-10\) ; \(b=\frac{3}{5}.\left(-25\right)=-15\)

Vậy a = -10 ; b = -15 và c = -25

Bình luận (0)
PM
23 tháng 11 2017 lúc 21:36

C

Bình luận (0)
PA
Xem chi tiết
NG
14 tháng 1 2016 lúc 17:02

a= -10

b=-15

c=-25

Bình luận (0)
IY
Xem chi tiết
KS
21 tháng 6 2018 lúc 15:38

\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)\(=\frac{\left(3a-2b\right).5}{5.5}=\frac{\left(2c-5a\right).3}{3.3}=\frac{\left(5b-3c\right).2}{2.2}\) \(=\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}=\frac{0}{38}=0\) 

\(\Rightarrow\frac{3a-2b}{5}=0\Rightarrow3a-2b=0\Rightarrow3a=2b\Rightarrow\frac{a}{2}=\frac{b}{3}\) (1)

      \(\frac{2c-5a}{3}=0\Rightarrow2c-5a=0\Rightarrow2c=5a\Rightarrow\frac{c}{5}=\frac{a}{2}\) (2)

Từ (1) và (2) ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)

\(\Rightarrow\frac{a}{2}=-5\Rightarrow a=-10\)

     \(\frac{b}{3}=-5\Rightarrow b=-15\)

      \(\frac{c}{5}=-5\Rightarrow c=-25\)

\(\Rightarrow\)\(a^{b-c}=\left(-10\right)^{\left(-15\right)-\left(-25\right)}=\left(-10\right)^{10}=10^{10}\)

Bài này chỉ cần đưa về dạng thu gọn, ko cần tính ra kết quả cụ thể bạn nhé.

Bình luận (0)
PQ
21 tháng 6 2018 lúc 15:33

Ta có : 

\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)

\(\Leftrightarrow\)\(\frac{5\left(3a-2b\right)}{5.5}=\frac{3\left(2c-5a\right)}{3.3}=\frac{2\left(5b-3c\right)}{2.2}\)

\(\Leftrightarrow\)\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}=\frac{0}{38}=0\)

Do đó : 

\(\frac{3a-2b}{5}=0\)\(\Rightarrow\)\(3a-2b=0\)\(\Rightarrow\)\(3a=2b\)\(\Rightarrow\)\(\frac{a}{2}=\frac{b}{3}\) \(\left(1\right)\)

\(\frac{2c-5a}{3}=0\)\(\Rightarrow\)\(2c-5a=0\)\(\Rightarrow\)\(2c=5a\)\(\Rightarrow\)\(\frac{c}{5}=\frac{a}{2}\) \(\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)

Do đó : 

\(\frac{a}{2}=-5\)\(\Rightarrow\)\(a=\left(-5\right).2=-10\)

\(\frac{b}{3}=-5\)\(\Rightarrow\)\(b=\left(-5\right).3=-15\)

\(\frac{c}{5}=-5\)\(\Rightarrow\)\(c=\left(-5\right).5=-25\)

Suy ra : 

\(a^{b-c}=\left(-10\right)^{-15-25}=\left(-10\right)^{-40}=10^{-40}\)

Vậy \(a^{b-c}=10^{-40}\)

Chúc bạn học tốt ~ 

Bình luận (0)
IY
21 tháng 6 2018 lúc 15:37

bạn ơi,b-c tức là -15-(-25)=-15+25=10 mà bạn

Bình luận (0)
TY
Xem chi tiết
NA
5 tháng 4 2018 lúc 21:16

TA CÓ:

\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}=\frac{15a-10b}{25}\)\(=\frac{6c-15a}{9}=\frac{10b-6c}{4}\)\(=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}=\frac{0}{38}=0\)

\(\Rightarrow3a-2b=0\Rightarrow3a=2b\Rightarrow\frac{a}{2}=\frac{b}{3}\)   \(\left(1\right)\)

\(\Rightarrow2c-5a=0\Rightarrow2c=5a\Rightarrow\frac{c}{5}=\frac{a}{2}\)    \(\left(2\right)\)

Từ (1) và (2) => \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)

Áp dụng t/c của dãy tỉ số bằng nhau ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{50}{10}=5\)

\(\frac{a}{2}=5\Rightarrow a=10\)

\(\frac{b}{3}=5\Rightarrow b=15\)

\(\frac{c}{5}=5\Rightarrow c=25\)

Vậy a=10, b=15, c=25

Bình luận (0)
LK
Xem chi tiết
TH
5 tháng 2 2016 lúc 17:32

minh da hok toi lop 6 roi ban à

Bình luận (0)