Những câu hỏi liên quan
HP
Xem chi tiết
VN
Xem chi tiết

Gọi độ dài cạnh góc vuông của tam giác là a,ba,b, độ dài cạnh huyền là cc (ĐK: a,b,c∈Z+a,b,c∈Z+;a+b>c;c>a;c>ba+b>c;c>a;c>b)

Theo đề bài:

a2+b2=c2a2+b2=c2 (Định lí Py−ta−goPy−ta−go)

và ab=3.(a+b+c)ab=3.(a+b+c)

⟺2ab=6(a+b+c)⟺2ab=6(a+b+c)

⟺a2+2ab+b2=c2+6(a+b+c)⟺a2+2ab+b2=c2+6(a+b+c)

⟺(a+b)2−6(a+b)+9=c2+6c+9⟺(a+b)2−6(a+b)+9=c2+6c+9

⟺(a+b−3)2=(c+3)2⟺(a+b−3)2=(c+3)2

⟺a+b−3=c+3∨a+b−3=−3−c⟺a+b−3=c+3∨a+b−3=−3−c

⟺a+b=c+6∨a+b=−c⟺a+b=c+6∨a+b=−c (TH sau vô lí vì a+b>0>−ca+b>0>−c)

⟺a+b=c+6⟺a+b=c+6.

⟺6a+6b=6c+36⟺6a+6b=6c+36 (1)(1)

Vì a2+b2=c2a2+b2=c2

⟺(a+b)2−2ab=c2⟺(a+b)2−2ab=c2

⟺(c+6)2−2ab=c2⟺(c+6)2−2ab=c2

⟺c2+12c+36−2ab=c2⟺c2+12c+36−2ab=c2

⟺12c+36=2ab⟺12c+36=2ab

⟺6c+18=ab⟺6c+18=ab (2)(2)

Từ (1),(2)(1),(2) →6a+6b−ab=6c+36−6c−18→6a+6b−ab=6c+36−6c−18

⟺ab−6a−6b+18=0⟺ab−6a−6b+18=0

⟺(a−6)(b−6)=18⟺(a−6)(b−6)=18

Giả sử a≥ba≥b

Giải phương trình tích trên được (a;b)=(24;7);(12;9);(15;8)(a;b)=(24;7);(12;9);(15;8)

Tìm được (a;b;c)=(24;7;25);(12;9;15);(15;8;17)

Bình luận (0)
BB
Xem chi tiết
NK
Xem chi tiết
H24

gọi \(z,y,z\text{ là các cạnh của tam giác vuông ,ta có}\)

\(x^2+y^2=z^2\left(1\right)\)

\(xy=2\left(x+y+z\right)\left(2\right)\)

\(\text{Từ (1) ta có:}\)

\(z^2=\left(z+y\right)^2-2xy=\left(x+y\right)^2-4\left(x+y+z\right)\Rightarrow\left(x+y\right)^2-4\left(x+y\right)+4=z^2-4z+4\)

\(\Rightarrow\left(x+y-2\right)^2=\left(z+2\right)^2\)

\(\Rightarrow x+y-2=z+2\left(x+y\ge2\right)\)

Thay z=x+y−4vào (2) ta được :

\(\left(x-4\right)\left(y-4\right)=8\)

\(\Leftrightarrow x-4=1;y-4=8\)hoặc  \(x-4=2;y-4=4\)

\(\Leftrightarrow x=5;y=12\)hoặc   \(x=6;y=8\)

Bình luận (0)
 Khách vãng lai đã xóa
PT
Xem chi tiết
TN
20 tháng 2 2018 lúc 17:23

Gọi số đo 3 cạnh của tam giác đó là a,b,c ( c là cạnh huyền)

Theo bài ra ta có \(\hept{\begin{cases}c^2=a^2+b^2\\ab=2\left(a+b+c\right)\end{cases}}\)

Ta có 

c2=a2+b2(1)

=> c2=(a+b)2-2ab= (a+b)2-4(a+b+c)

=> c2=a2+b2+2ab-4a-4b-4c

=> c2+4c= a2+b2+2ab-4a-4b

<=> c2+4c+4=a2+b2+2ab-4a-4b+4

<=> (c+2)2=(a+b-2)2

Do a,b,c là số tự nhiên nên 

c+2=a+b-2 <=> c=a+b-4

Thay c=a+b-2 vào (1)  ta được

(a+b-4)2=a2+b2

<=> a2+b2+16-8a-8b+2ab=a2+b2

<=> 2ab-8a-8b=-16

<=> ab-4a-4b=-8

<=> ab-4a-4b+16=8

<=> a(b-4)-4(b-4)=8

<=> (b-4)(a-4)=8

Đến đây lập bảng xét ước là ra

Bình luận (0)
CH
20 tháng 2 2018 lúc 16:54

tổng 2 số là 16.26 . nếu gấp số thứ nhất lên 5 lần và gấp số thứ 2 lên 2 lần thì tổng mới là 43.2 .tìm 2 số

Bình luận (0)
LT
20 tháng 2 2018 lúc 17:02

a Hùng ơi, a giải bài nào đấy

Bình luận (0)
DT
Xem chi tiết
KP
2 tháng 4 2016 lúc 19:35

Có hai tam giác vuông có các cạnh (5;12;13) và (6;8;10) thỏa mãn yêu cầu bài toán!

k đúng cho mk nha!

Bình luận (0)
H24
Xem chi tiết
II
Xem chi tiết
H24
29 tháng 8 2016 lúc 16:28

gọi 2 cạnh góc vuông lần lượt là a và b(a,b có vai trò như nhau;a,bϵ N)

thì độ dài cạnh huyền là\(\sqrt{a^2+b^2}\)

theo đề bài ta có: \(2.\frac{1}{2}a.b=3\left(a+b+\sqrt{a^2+b^2}\right)\)

→ab-3a-3b=3\(\sqrt{a^2+b^2}\)

\(a^2b^2+9a^2+9b^2-6a^2b-6ab^2+18ab=9a^2+9b^2\)

\(a^2b^2-6a^2b-6ab^2+18ab=0\)

→ab-6a-6b+18=0→(a-6)(b-6)=18=1.18=2.9=3.6(vì a,b>0→a-6;b-6>-6 nên ta loại các giá trị âm)

ta có bảng:

a-6     1                               2                              3

b-6      18                            9                               6

a           7                              8                              9

b           24                              15                         12

thử lại ta có tất cả đều t/m

vậy (a,b)ϵ\(\left\{\left(7,24\right);\left(8,15\right);\left(9,12\right)\right\}\)

 

Bình luận (0)
TL
Xem chi tiết
H24
1 tháng 6 2019 lúc 9:10

Gọi x; y; z là độ dài ba cạnh tam giác vuông với z là cạnh huyền thì theo đề bài,ta có: 

\(z>y\ge x\ge1\) và

\(\hept{\begin{cases}x^2+y^2=z^2\left(\text{Định lí Pythagoras}\right)\\\frac{xy}{2}=x+y+z\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy=z^2\left(1\right)\\xy=2\left(x+y+z\right)\left(2\right)\end{cases}}\)   

Thay (2) lên (1) suy ra \(z^2=\left(x+y\right)^2-4\left(x+y+z\right)\)

\(\Leftrightarrow z^2+4z=\left(x+y\right)^2-4\left(x+y\right)\)

\(\Leftrightarrow z^2+4z+4=\left(x+y\right)^2-4\left(x+y\right)+4\)

\(\Leftrightarrow\left(z+2\right)^2=\left(x+y-2\right)^2\) (*)

Do \(z>y\ge x\ge1\) nên cả hai vế cùng không âm.

Do đó từ (*) suy ra \(z+2=x+y-2\Leftrightarrow z=x+y-4\)

Thay ngược lên (2) và giải tiếp bằng cách phân tích đa thức thành nhân tử và lập bảng xét ước:P.

Note: Em không chắc đâu ạ!

Bình luận (0)