Tìm độ dài các cạnh của tam giác vuông biết số đo diện tích bằng số đo chu vi.
Tìm độ dài ba cạnh ( là số nguyên ) của tam giác vuông biết số đo chu vi bằng số đo diện
tích
tìm các cạnh của tam giác vuông biết độ dài là số nguyên và 2 lần số đo diện tích =3 lần số đo chu vi
Gọi độ dài cạnh góc vuông của tam giác là a,ba,b, độ dài cạnh huyền là cc (ĐK: a,b,c∈Z+a,b,c∈Z+;a+b>c;c>a;c>ba+b>c;c>a;c>b)
Theo đề bài:
a2+b2=c2a2+b2=c2 (Định lí Py−ta−goPy−ta−go)
và ab=3.(a+b+c)ab=3.(a+b+c)
⟺2ab=6(a+b+c)⟺2ab=6(a+b+c)
⟺a2+2ab+b2=c2+6(a+b+c)⟺a2+2ab+b2=c2+6(a+b+c)
⟺(a+b)2−6(a+b)+9=c2+6c+9⟺(a+b)2−6(a+b)+9=c2+6c+9
⟺(a+b−3)2=(c+3)2⟺(a+b−3)2=(c+3)2
⟺a+b−3=c+3∨a+b−3=−3−c⟺a+b−3=c+3∨a+b−3=−3−c
⟺a+b=c+6∨a+b=−c⟺a+b=c+6∨a+b=−c (TH sau vô lí vì a+b>0>−ca+b>0>−c)
⟺a+b=c+6⟺a+b=c+6.
⟺6a+6b=6c+36⟺6a+6b=6c+36 (1)(1)
Vì a2+b2=c2a2+b2=c2
⟺(a+b)2−2ab=c2⟺(a+b)2−2ab=c2
⟺(c+6)2−2ab=c2⟺(c+6)2−2ab=c2
⟺c2+12c+36−2ab=c2⟺c2+12c+36−2ab=c2
⟺12c+36=2ab⟺12c+36=2ab
⟺6c+18=ab⟺6c+18=ab (2)(2)
Từ (1),(2)(1),(2) →6a+6b−ab=6c+36−6c−18→6a+6b−ab=6c+36−6c−18
⟺ab−6a−6b+18=0⟺ab−6a−6b+18=0
⟺(a−6)(b−6)=18⟺(a−6)(b−6)=18
Giả sử a≥ba≥b
Giải phương trình tích trên được (a;b)=(24;7);(12;9);(15;8)(a;b)=(24;7);(12;9);(15;8)
Tìm được (a;b;c)=(24;7;25);(12;9;15);(15;8;17)
Tìm số đo diện tích của 1 tam giác vuông có số đo các cạnh là các số tự nhiên và độ lớn số đo chu vi bằng độ lớn số đo diện tích
tìm tất cả tam giác vuông có độ dài các cạnh là số nguyên mà số đo diện tích bằng số đo chu vi
gọi \(z,y,z\text{ là các cạnh của tam giác vuông ,ta có}\)
\(x^2+y^2=z^2\left(1\right)\)
\(xy=2\left(x+y+z\right)\left(2\right)\)
\(\text{Từ (1) ta có:}\)
\(z^2=\left(z+y\right)^2-2xy=\left(x+y\right)^2-4\left(x+y+z\right)\Rightarrow\left(x+y\right)^2-4\left(x+y\right)+4=z^2-4z+4\)
\(\Rightarrow\left(x+y-2\right)^2=\left(z+2\right)^2\)
\(\Rightarrow x+y-2=z+2\left(x+y\ge2\right)\)
Thay z=x+y−4vào (2) ta được :
\(\left(x-4\right)\left(y-4\right)=8\)
\(\Leftrightarrow x-4=1;y-4=8\)hoặc \(x-4=2;y-4=4\)
\(\Leftrightarrow x=5;y=12\)hoặc \(x=6;y=8\)
Tìm tất cả các tam giác vuông có độ dài các cạnh là số tự nhiên và số đo diện tích bằng số đo chu vi
Gọi số đo 3 cạnh của tam giác đó là a,b,c ( c là cạnh huyền)
Theo bài ra ta có \(\hept{\begin{cases}c^2=a^2+b^2\\ab=2\left(a+b+c\right)\end{cases}}\)
Ta có
c2=a2+b2(1)
=> c2=(a+b)2-2ab= (a+b)2-4(a+b+c)
=> c2=a2+b2+2ab-4a-4b-4c
=> c2+4c= a2+b2+2ab-4a-4b
<=> c2+4c+4=a2+b2+2ab-4a-4b+4
<=> (c+2)2=(a+b-2)2
Do a,b,c là số tự nhiên nên
c+2=a+b-2 <=> c=a+b-4
Thay c=a+b-2 vào (1) ta được
(a+b-4)2=a2+b2
<=> a2+b2+16-8a-8b+2ab=a2+b2
<=> 2ab-8a-8b=-16
<=> ab-4a-4b=-8
<=> ab-4a-4b+16=8
<=> a(b-4)-4(b-4)=8
<=> (b-4)(a-4)=8
Đến đây lập bảng xét ước là ra
tổng 2 số là 16.26 . nếu gấp số thứ nhất lên 5 lần và gấp số thứ 2 lên 2 lần thì tổng mới là 43.2 .tìm 2 số
Tìm tất cả cac tam giác vuông có độ dài các cạnh là số tự nhiên và số đo diện tích bằng số đo chu vi
Có hai tam giác vuông có các cạnh (5;12;13) và (6;8;10) thỏa mãn yêu cầu bài toán!
k đúng cho mk nha!
Tìm tất cả các tam giác vuông có độ dài cạnh là số nguyên và số do diện tích bằng số đo chu vi
tìm 2 cạnh góc vuông của 1 tam giác vuông biết 2 lần số đo diện tích bằng 3 lần số đo chu vi. biết các cạnh là số nguyên.
gọi 2 cạnh góc vuông lần lượt là a và b(a,b có vai trò như nhau;a,bϵ N)
thì độ dài cạnh huyền là\(\sqrt{a^2+b^2}\)
theo đề bài ta có: \(2.\frac{1}{2}a.b=3\left(a+b+\sqrt{a^2+b^2}\right)\)
→ab-3a-3b=3\(\sqrt{a^2+b^2}\)
→\(a^2b^2+9a^2+9b^2-6a^2b-6ab^2+18ab=9a^2+9b^2\)
→\(a^2b^2-6a^2b-6ab^2+18ab=0\)
→ab-6a-6b+18=0→(a-6)(b-6)=18=1.18=2.9=3.6(vì a,b>0→a-6;b-6>-6 nên ta loại các giá trị âm)
ta có bảng:
a-6 1 2 3
b-6 18 9 6
a 7 8 9
b 24 15 12
thử lại ta có tất cả đều t/m
vậy (a,b)ϵ\(\left\{\left(7,24\right);\left(8,15\right);\left(9,12\right)\right\}\)
Tìm tất cả các bộ ba ( x, y, z) sao cho x, y, z là các số nguyên và x, y, z là độ dài ba cạnh của tam giác vuông có số đo diện tích bằng số đo chu vi ( không kể đơn vị đo)
Gọi x; y; z là độ dài ba cạnh tam giác vuông với z là cạnh huyền thì theo đề bài,ta có:
\(z>y\ge x\ge1\) và
\(\hept{\begin{cases}x^2+y^2=z^2\left(\text{Định lí Pythagoras}\right)\\\frac{xy}{2}=x+y+z\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy=z^2\left(1\right)\\xy=2\left(x+y+z\right)\left(2\right)\end{cases}}\)
Thay (2) lên (1) suy ra \(z^2=\left(x+y\right)^2-4\left(x+y+z\right)\)
\(\Leftrightarrow z^2+4z=\left(x+y\right)^2-4\left(x+y\right)\)
\(\Leftrightarrow z^2+4z+4=\left(x+y\right)^2-4\left(x+y\right)+4\)
\(\Leftrightarrow\left(z+2\right)^2=\left(x+y-2\right)^2\) (*)
Do \(z>y\ge x\ge1\) nên cả hai vế cùng không âm.
Do đó từ (*) suy ra \(z+2=x+y-2\Leftrightarrow z=x+y-4\)
Thay ngược lên (2) và giải tiếp bằng cách phân tích đa thức thành nhân tử và lập bảng xét ước:P.
Note: Em không chắc đâu ạ!