Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
KN
Xem chi tiết
TD
28 tháng 12 2019 lúc 21:06

vì trong 3 số x,y,z có ít nhất là 2 số cùng dấu

giả sử \(x,y\le0\)\(\Rightarrow z=-\left(x+y\right)\ge0\)

Mà \(-1\le x,y,z\le1\)nên \(x^2\le\left|x\right|;y^4\le\left|y\right|;z^6\le\left|z\right|\)

\(\Rightarrow x^2+y^4+z^6\le\left|x\right|+\left|y\right|+\left|z\right|=-x-y+z=-\left(x+y\right)+z=2z\le2\)

Dấu " = " xảy ra chẳng hạn x = 0 ; y = -1; z = 1

Bình luận (0)
 Khách vãng lai đã xóa
LL
Xem chi tiết
H24
8 tháng 3 2018 lúc 12:07

Ta có:

\(-1\le x\le1;-1\le y\le1;-1\le z\le1\Leftrightarrow x^2;y^2;z^2\le1\) (1)

Trong 3 số \(x;y;z\)có ít nhất 2 số cùng dấu(giả xử là \(x;y\)) ta có: \(xy\ge0\Rightarrow2xy\ge0\)(2)

\(x^2+y^4+z^6=x^2+y^2.y^2+z^2.z^2.z^2\le x^2+y^2+z^2\)(3)

ta sẽ chứng minh:

\(x^2+y^2+z^2\le2\) ta có: 

\(x^2+y^2+z^2\le x^2+y^2+z^2+2xy\)(từ (2) )

\(\Rightarrow x^2+y^2+z^2\le\left(x+y\right)^2+z^2=\left(-z\right)^2+z^2=2z^2\le2\)(từ (1)  )

\(\Rightarrow x^2+y^4+z^6\le2\left(đpcm\right)\)(từ (3) )

Bình luận (0)
TM
14 tháng 3 2018 lúc 18:03

Ta có:

−1≤x≤1;−1≤y≤1;−1≤z≤1⇔x2;y2;z2≤1 (1)

Trong 3 số x;y;zcó ít nhất 2 số cùng dấu(giả xử là x;y) ta có: xy≥0⇒2xy≥0(2)

x2+y4+z6=x2+y2.y2+z2.z2.z2≤x2+y2+z2(3)

ta sẽ chứng minh:

x2+y2+z2≤2 ta có: 

x2+y2+z2≤x2+y2+z2+2xy(từ (2) )

⇒x2+y2+z2≤(x+y)2+z2=(−z)2+z2=2z2≤2(từ (1)  )

⇒x2+y4+z6≤2(đpcm)(từ (3) )

 ..

Bình luận (0)
VA
Xem chi tiết
NN
10 tháng 2 2020 lúc 9:42

cbfffffffffffffffffffffffffffffffffffffffsdhnc

Bình luận (0)
 Khách vãng lai đã xóa
NN
10 tháng 2 2020 lúc 9:42

b gipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipụt

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
X1
26 tháng 3 2019 lúc 20:12

Do \(x+y+z=0;-1\le x,y,z\le1\)

Suy ra : Trong 3 số x,y,z tồn tại hai số cùng dấu

Giả sử : \(x\ge0;y\ge0;z\le0\)

Từ : \(x+y+z=0\)\(\Rightarrow z=-x-y\)

\(x^2+y^4+z^6\le\left|x\right|+\left|y\right|+\left|z\right|=x+y-z=-2z\)

\(\Rightarrow x^2+y^4+z^6\le-2z\le2\)

Vậy : \(x^2+y^4+z^6\le2\)

Bình luận (0)
Xem chi tiết

Ai giải trước mk mỗi ngày 3 cái . k hết 7 ngày nha 

Bình luận (0)
H24
11 tháng 2 2020 lúc 21:33

vào câu hỏi tương tự có lẽ sẽ gợi cho bn ý tưởng để làm bài này đó

chúc học tốt !

Bình luận (0)
 Khách vãng lai đã xóa
2N
11 tháng 2 2020 lúc 22:04

TH1: Để x+y+z=0 là 3 số thực thoả mãn thì ta có các chữ số lớn nhất có thể cộng lại bằng 0 là -1,1,0

Tá có các số mũ theo đề bài yêu cầu đều là các số chẵn do đó -1 ứng với các số mũ trên đều có kết quả bằng 1 (1)

Đối với 1 khi ứng với các số mũ trên tất nhiên kết quả cuối cùng = 1  (2)

Đối với 0 khi ứng với các số mũ trên tất nhiên kết quả cuối cùng = 0 (3)

Từ(1),(2),(3) => ta có theo yêu cầu của từng trường hợp x,y,z ta có kết quả cuối cùng = 2 (hợp  lệ)

TH2: x,y,z đều bằng 0

Đối với 0 khi ứng với các số mũ trên tất nhiên kết quả cuối cùng = 0

=>Ta có tất nhiên kết quả cuối cùng bằng 0 (hợp lệ)

Từ cả hai trường hợp đều có kết quả < 2 thoả mãn điều cân phải chứng minh => x2 + y4+ z6 <  2 

#HỌCTỐT

&YOUTUBER&

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TA
15 tháng 4 2019 lúc 16:44

−1≤x≤1;−1≤y≤1;−1≤z≤1⇔x2;y2;z2≤1 (1)

Trong 3 số x;y;zcó ít nhất 2 số cùng dấu(giả xử là x;y) ta có: xy≥0⇒2xy≥0(2)

x2+y4+z6=x2+y2.y2+z2.z2.z2≤x2+y2+z2(3)

ta sẽ chứng minh:

x2+y2+z2≤2 ta có: 

x2+y2+z2≤x2+y2+z2+2xy(từ (2) )

⇒x2+y2+z2≤(x+y)2+z2=(−z)2+z2=2z2≤2(từ (1)  )

⇒x2+y4+z6≤2(đpcm)(từ (3) )

 ..

Bình luận (0)
NN
9 tháng 2 2020 lúc 14:32

Nam Mô Ki Ni 

Bình luận (0)
 Khách vãng lai đã xóa
H24
20 tháng 2 2020 lúc 11:02

 ༄NguyễnTrungNghĩa༄༂ 

Bình luận (0)
 Khách vãng lai đã xóa
CG
Xem chi tiết
CH
16 tháng 4 2018 lúc 21:50

ok K đi

Bình luận (0)
HM
Xem chi tiết
NH
Xem chi tiết
TL
31 tháng 7 2020 lúc 20:42

vì 0<x,y,z\(\le\)1 nên (1-x)(1-y) >=0 <=> 1+xy >= x+y

<=> 1+z+xy >= x+y+z

<=> \(\frac{y}{1+z+xy}\le\frac{y}{x+y+z}\left(1\right)\)

tương tự có \(\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\left(2\right);\frac{z}{1+x+xy}\le\frac{z}{x+y+z}\left(3\right)\)

cộng theo vế của (1), (2), (3) ta được

\(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{x+y+z}{x+y+z}\le\frac{3}{x+y+z}\)

dấu "=" xảy ra khi x=y=z=1

Bình luận (0)
 Khách vãng lai đã xóa
HF
30 tháng 7 2020 lúc 8:28

\(\frac{x}{1+y+zx}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\text{Σ}\frac{x}{x^2+xy+zx}=\text{Σ}\frac{x}{x\left(x+y+z\right)}=\frac{3}{x+y+z}\)

Do \(1\ge x^2\)và \(y\ge xy\)

Dấu = xảy ra khi x = y = z = 1

Bình luận (0)
 Khách vãng lai đã xóa
KN
1 tháng 11 2020 lúc 19:57

Xét biểu thức:\(\frac{x}{1+y+zx}-\frac{1}{x+y+z}=\frac{x\left(x+y+z\right)-\left(1+y+zx\right)}{\left(1+y+zx\right)\left(x+y+z\right)}=\frac{x^2+xy-1-y}{\left(1+y+zx\right)\left(x+y+z\right)}=\frac{\left(x+y+1\right)\left(x-1\right)}{\left(1+y+zx\right)\left(x+y+z\right)}\le0\)(Đúng vì \(x,y,z>0;x\le1\))

\(\Rightarrow\frac{x}{1+y+zx}\le\frac{1}{x+y+z}\)

Tương tư, ta có: \(\frac{y}{1+z+xy}\le\frac{1}{x+y+z}\)\(\frac{z}{1+x+yz}\le\frac{1}{x+y+z}\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{x}{1+y+zx}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)

Đẳng thức xảy ra khi x = y = z = 1

Bình luận (0)
 Khách vãng lai đã xóa