Những câu hỏi liên quan
ND
Xem chi tiết
NT
Xem chi tiết
H24
3 tháng 4 2016 lúc 21:11

\(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}\Rightarrow\left(7x+5y\right)\left(3z-7t\right)=\left(7z+5t\right)\left(3x-7y\right)\)

\(\Leftrightarrow21xz+15yz-49tx-35ty=21xz+15tx-49yz-35ty\)

\(\Leftrightarrow21xz-21xz+15yz+49yz-49tx-15tx-35ty+35ty=0\)

\(\Leftrightarrow64yz-64tx=0\)

\(\Leftrightarrow yz=tx\)

\(\Leftrightarrow\frac{x}{y}=\frac{z}{t}\)

Bình luận (0)
AM
Xem chi tiết
TD
5 tháng 10 2015 lúc 12:52

\(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}=>\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}\)

=>\(\frac{7x}{7z}=\frac{5y}{5t}=\frac{3x}{3z}=\frac{7y}{7t}\)(t/c ngược của t/c dãy tỉ số bằng nhau)

=>\(\frac{x}{z}=\frac{y}{t}=\frac{x}{z}=\frac{y}{t}\)

 TỪ \(\frac{x}{z}=\frac{y}{t}=>\frac{x}{y}=\frac{z}{t}\)(ĐPCM)

Bình luận (0)
H24
15 tháng 1 2017 lúc 21:47

alexander sky sơn tùng mặt toàn phân

Bình luận (0)
KD
19 tháng 3 2018 lúc 20:54

//////////////////////////////////////////////////////////////

Bình luận (0)
NH
Xem chi tiết
H24
1 tháng 4 2018 lúc 21:16

a, Theo hệ thức viét ta có : 

Vì x1=1 và x2=-1 là 2 nghiệm của pt : f(x)=ax^2+bx+c nên : 

\(x_1.x_2=\frac{c}{a}=-1\cdot1=-1\) => \(a=-c\) 

Vậy a và c là 2 số đối nhau 

b, Ta có : f(x-1)=a(x-1)^2+b(x-1)+c

=> \(f\left(x\right)-f\left(x-1\right)=ax^2+bx+c-\left[a\left(x-1\right)^2+b\left(x-1\right)+c\right]\)

\(=2ax+a+b\)

Mặt khác : f(x)-f(x-1)=x nên : \(2ax+a+b=x\)

<=> \(x\left(2a-1\right)+a+b=0\)

Do \(a\ne0\) ( đk của pt bậc 2 ) nên a=1/2 và a+b=0 ( nghiệm thoả mãn ) 

=> \(f\left(x\right)=\frac{1}{2}x^2-\frac{1}{2}x+c\)

Áp dụng kết quả trên ta có : \(f\left(1\right)-f\left(0\right)=1\)

............

 \(f\left(n\right)-f\left(n-1\right)=n\) 

=> \(1+2+3+...+n=f\left(1\right)-f\left(0\right)+f\left(2\right)-f\left(1\right)+...+f\left(n\right)-f\left(n-1\right)\)

\(=f\left(n\right)-f\left(0\right)=\frac{1}{2}n^2-\frac{1}{2}n+c-\left(0\cdot a+0\cdot b+c\right)=\frac{1}{2}n^2-\frac{1}{2}n\)

Bình luận (0)
TD
Xem chi tiết
NT
20 tháng 8 2021 lúc 21:00

\(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}\Rightarrow\left(7x+5y\right)\left(3z-7t\right)=\left(7z+5t\right)\left(3x-7y\right)\)

\(\Leftrightarrow21xz-49xt+15yz-35yt=21xz-49yz+15xt-35yt\)

\(\Leftrightarrow-49xt+15yz=-49yz+15xt\Leftrightarrow-64xt=-64yz\Leftrightarrow xt=yz\Leftrightarrow\frac{x}{y}=\frac{z}{t}\)

Vậy ta có đpcm 

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
NT
Xem chi tiết
MP
27 tháng 10 2017 lúc 21:29

ntn

Bình luận (0)
LT
Xem chi tiết
NT
Xem chi tiết
NT
7 tháng 12 2016 lúc 18:36

Bài 1:
Giải:

Ta có: \(\frac{x}{y}=\frac{3}{2}\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)

\(5x=7z\Rightarrow\frac{x}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{15}=\frac{2y}{28}=\frac{x-2y+z}{21-28+15}=\frac{32}{8}=4\)

+) \(\frac{x}{21}=4\Rightarrow x=84\)

+) \(\frac{y}{14}=4\Rightarrow y=56\)

+) \(\frac{z}{15}=4\Rightarrow z=60\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(84;56;60\right)\)

Bài 2:
Giải:

Ta có: \(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}\Rightarrow\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}=\frac{7x}{7z}=\frac{5y}{5t}=\frac{3x}{3z}=\frac{7y}{7t}=\frac{x}{z}=\frac{y}{t}=\frac{x}{z}=\frac{y}{t}\)

\(\frac{x}{z}=\frac{y}{t}\Rightarrow\frac{x}{y}=\frac{z}{t}\)

\(\Rightarrowđpcm\)
 

Bình luận (1)
TM
7 tháng 12 2016 lúc 20:15

BÀI 1 LÀ áp dụng tính chất của dãy tỉ sỗ = nhau

BT2 là cũng vậy r ss

 

Bình luận (0)