`(3.2^(x+1))/(2.2^(x+2))`
Tìm x biết :
`(3.2^(x+1))/(2.2^(x+2))=40`
\(\Leftrightarrow\dfrac{3\cdot2^{x+1}}{2^{x+3}}=40\\ \Leftrightarrow\dfrac{3}{2^2}=40\left(vô.lí\right)\Leftrightarrow x\in\varnothing\)
2.2^2.2^3.2^4 ... 2^x = 2
2.2^2.2^3.2^4 ... 2^x = 2
Tìm x biết
2.2^2.2^3.2^4...2^x=1024
Mình giải không ra mong mọi người giúp đỡ
2.2^2.2^3.2^4......2^x = 1024
2^(1+2+...+x) = 2^10
=> 1+2 + 3+...+ x = 10
=>x.(1+x):2 = 10
=>x.(1+x) = 20
=> x = 4 (vì 4.5 =20)
Đúng cái gì cơ
Tìm x biết:
2.22+3.23+4.24+...+x.2x=2x+10
1.Tìm x biết:
(x-4)^2 = (x-4)^4
2. Tìm số n thuộc N biết
2.2^2+3.2^3+4.2^4+5.2^5+...+ n.2^n = 2^n+10
Giúp mình với
Tìm x thuộc N biết:
2.2^2 + 3.2^3 + 4,2^4 +...+ x.2^x = 2x^10
Giúp mình với ạ
a)\(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}=\frac{x+1}{5}+\)\(\frac{x+1}{6}\)
b)\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\)\(\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
c)\(2.2^2.2^3.2^4.........2^x=1024\)\(\left(x\in z\right)\)
Tìm x
b./ \(\Leftrightarrow\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1.\)
\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)(b)
Mà \(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}< 0\)
(b) \(\Leftrightarrow x+2010=0\Leftrightarrow x=-2010\)
a./
\(\Leftrightarrow\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}-\frac{x+1}{5}-\frac{x+1}{6}=0.\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)(a)
Mà \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}>0\)
(a) \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
c./ \(\Leftrightarrow2\cdot2^2\cdot2^3\cdot...\cdot2^x=2^{10}\Leftrightarrow2^{1+2+3+...+x}=2^{10}\Leftrightarrow1+2+3+...+x=10\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{2}=10\Leftrightarrow x\left(x+1\right)=20=4\cdot5\Rightarrow x=4\)
tìm x, biết x là số tự nhiên
b)2.3^x=162
c)(2x-15)^5=(2x-15)^3
d)3^(x+2) -5.3^x
e)7.4^(x-1)+4(x+1)=23
f)2.2^(2x)+4^3.4^x=1056
10 -{[(x:3+17):10+3.2^4]:10}=5
gấp, mọi ng giúp mình với
`#3107`
b)
`2.3^x = 162`
`\Rightarrow 3^x = 162 \div 2`
`\Rightarrow 3^x = 81`
`\Rightarrow 3^x = 3^4`
`\Rightarrow x = 4`
Vậy, `x = 4`
c)
`(2x - 15)^5 = (2 - 15)^3`
\(\Rightarrow \)`(2x - 15)^5 - (2x - 15)^3 = 0`
\(\Rightarrow \)`(2x - 15)^3 . [ (2x - 15)^2 - 1] = 0`
\(\Rightarrow\left[{}\begin{matrix}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x-15=0\\\left(2x-15\right)^2=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x=15\\\left(2x-15\right)^2=\left(\pm1\right)^2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\2x-15=1\\2x-15=-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\2x=16\\2x=-14\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\x=8\\x=-7\end{matrix}\right.\)
Vậy, `x \in`\(\left\{-7;8;\dfrac{15}{2}\right\}.\)
`d)`
\(3^{x+2}-5.3^x=?\) Bạn ghi tiếp đề nhé!
`e)`
\(7\cdot4^{x-1}+4^{x-1}=23?\)
\(4^{x-1}\cdot\left(7+1\right)=23\\ \Rightarrow4^{x-1}\cdot8=23\\ \Rightarrow4^{x-1}=\dfrac{23}{8}\)
Bạn xem lại đề!
`f)`
\(2\cdot2^{2x}+4^3\cdot4^x=1056\)
\(\Rightarrow2\cdot2^{2x}+\left(2^2\right)^3\cdot\left(2^2\right)^x=1056\\ \Rightarrow2\cdot2^{2x}+2^6\cdot2^{2x}=1056\\ \Rightarrow2^{2x}\cdot\left(2+2^6\right)=1056\\ \Rightarrow2^{2x}\cdot66=1056\\ \Rightarrow2^{2x}=1056\div66\\ \Rightarrow2^{2x}=16\\ \Rightarrow2^{2x}=2^4\\ \Rightarrow2x=4\\ \Rightarrow x=2\)
Vậy, `x = 2`
_____
\(10 -{[(x \div 3+17) \div 10+3.2^4] \div 10}=5\)
\(\Rightarrow\left[\left(x\div3+17\right)\div10+48\right]\div10=10-5\)
\(\Rightarrow\left[\left(x\div3+17\right)\div10+48\right]\div10=5\)
\(\Rightarrow\left(x\div3+17\right)\div10+48=50\)
\(\Rightarrow\left(x\div3+17\right)\div10=2\)
\(\Rightarrow x\div3+17=20\)
\(\Rightarrow x\div3=3\\ \Rightarrow x=9\)
Vậy, `x = 9.`