Co a,b,c là các số khác 0 và a+b+c=0:tính X=(1+a/b)(1+b/c)(1+c/a) là số nnguyeen
x là số thực và a,b,c là các số thực đôi một khác nhau và khác 0 thỏa mãn \(x=a+\dfrac{1}{b}=b+\dfrac{1}{c}=c+\dfrac{1}{a}\)Tính xabc
Cho a,b,c là các hằng số và a khác -1, b khác -1, c khác -1. Chứng minh rằng nếu x=b*y+c*z; y=a*x+c*z; z=a*x+b*y; x+y+z khác 0 thì 1/(1+a)+1/(1+b)+1/(1+c)=2
Cho a,b,c là 3 số thực khác 0, thỏa mãn a+b-c/c = b+c-a/a =c+a-b/b và a+b+c khác 0.
hãy tính giá trị biểu thức B = (1+b/a). (1+a/c). (1+c/b)
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1\)
\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
+)Nếu a+b+c=0\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)
\(\Rightarrow B=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=\frac{-\left(abc\right)}{abc}=-1\)
Nếu \(a+b+ c\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow a+b=2c\)
\(b+ c=2a\)
\(c+a=2b\)
\(\Rightarrow B=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=2.2.2=8\)
a+b-c/c=b+c-a/a=c+a-b/b
=>a+b-1=b+c-1=c+a-1
=>a+b=b+c=c+a
Vì a+b=b+c
=>a=b+c-b
=>a=c
Vì b+c=c+a
=>b=c+a-c
=>b=a
Mà a=c
=>a=b=c
Ta có:B=(1+b/a).(1+a/c).(1+c/b)
=>B=(1+b/b).(1+a/a).(1+c/c)
=>B=(1+1).(1+1).(1+1)
=>B=2.2.2
=>B=8
Vậy B=8
Hok tốt!
Cho đa thức A(\(x\))=a\(x\)\(^2\)+b\(x\)+c (a,b,c là các hệ số ;\(x\) là biến)
a)Hãy tính A(-1),biết a+c=b-8
b)Tính a,b,c,biết A(0)=4;A(1)=9 và A(2)=14
c)Biết 5a+b+2c=0.CM A(2)xA(-1)\(\le\)0
giúp mình với khó quá!!!
a) Ta có: \(A\left(x\right)=ax^2+bx+c\)
Thay \(A\left(-1\right)\) ta được:
\(A\left(-1\right)=a\left(-1\right)^2+b\left(-1\right)+c=a+c-b\)
\(=b-8-b=-8\)
b) \(\left\{{}\begin{matrix}A\left(0\right)=4\\A\left(1\right)=9\\A\left(2\right)=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a+b+c=9\\4a+2b+c=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a+b=5\\4a+2b=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a+b=5\\2a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a=0\\b=5\end{matrix}\right.\)
c)
Ta có: \(\left\{{}\begin{matrix}A\left(2\right)=4a+2b+c\\A\left(-1\right)=a-b+c\end{matrix}\right.\)
\(\Leftrightarrow A\left(2\right)+A\left(-1\right)=5a+b+2c=0\)
\(\Leftrightarrow A\left(2\right)=-A\left(-1\right)\)
\(\Leftrightarrow A\left(2\right)\times A\left(-1\right)=-\left[A\left(2\right)\right]^2\le0\)
1) Cho x, y, z là các số thực thoả mãn xyz = 1
CMR: 1/1+x+xy + 1/1+y+yz + 1/1+z+zx = 1
2)Cho a, b, c là các số thực khác 0 thoả mãn a+b-c/c = b+c-a/a = a+c-b/b
Tính giá trị của biểu thức P= (1 + b/a).(1 + c/b).(1 + a/c)
chào bạn. tôi nghĩ rằng bạn đủ thông minh để làm nên tích đi đã r tôi sẽ giúp @*
cho a,b,c là các số thực đôi 1 khác nhau và khác 0 thoả mãn: a^2-b=b^2-c=c^2-a. tính giá thị của biểu thức P=(a+b)(b+c)(c+a)
Cho a,b,c là các số thực khác 0 và 1/c=1/2.(1/a+1/b) . Chứng minh a/b=a-c/c-b
\(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\frac{1}{c}:\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\)
\(\frac{2}{c}=\frac{a}{ab}+\frac{b}{ab}\)
\(\frac{2}{c}=\frac{a+b}{ab}\)
\(2ab=\left(a+b\right).c\)
\(ab+ab=ac+bc\)
\(ab-bc=ac-ab\)
\(b.\left(a-c\right)=a.\left(c-b\right)\)
\(\frac{a}{b}=\frac{a-c}{c-b}\)
Cho a, b, c là các số thực khác 0 (b khác c) và 1/c = 1/2 × ( 1/a + 1/b). Chứng minh
a/b = a - c/c - b
\(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\frac{1}{c}:\frac{1}{2}=\frac{b}{ab}+\frac{a}{ab}\)
\(\frac{2}{c}=\frac{a+b}{ab}\)
\(\Rightarrow2ab=a.\left(b+c\right)\)
\(ab+ab=ac+cb\)
\(ab-cb=ac-ab\)
\(b.\left(a-c\right)=a.\left(c-b\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)
Cho 3 số a,b,c là 3 số thực khác 0 , thỏa mãn:
a+b-c/c= b+c-a /a =c+a-b/b và a+b+c khác 0
Hãy tính giá trị biểu thức: B=(1+b/a) . (1+a/c) . (1+c/b)
giúp mk vs mk đg cần gấp