Những câu hỏi liên quan
NN
Xem chi tiết
NT
16 tháng 6 2018 lúc 9:56

10 \(\le\)\(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298

Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương

=> 2n + 1 thuộc { 25 ; 49  ; 81 ; 121 ;  169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )

Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298

=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )

Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương

Bình luận (0)
NL
29 tháng 11 2018 lúc 21:40

bài cô giao đi hỏi 

Bình luận (0)
NN
15 tháng 3 2020 lúc 21:25

chịu thôi

...............................

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
VA
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
TN
22 tháng 7 2019 lúc 16:56

Ta có :

11...1 555...5 6 (n chữ số 1; n -1 chữ số 5)

= 111…1 555…55 + 1 (n chữ số 1; n chữ số 5)

= 111…1 000…00 + 555….55 + 1 (n chữ số 1; n chữ số 0; n chữ số 5)

= 111….1 x 100…0 + 5.111…11 + 1 (n chữ số 1; n chữ số 0)

= 111…1 x (999…9 + 1) + 5.111…11 + 1

= 111…1 x 999…9 + 111…1 + 5.111…11 + 1

= (333…3)² + 6.111…1 + 1 (n chữ số 3)

= (333…3)² + 2.333…3.1 + 1

= (333…3 + 1)2

= 333…342 (n – 1 chữ số 3) là một số chính phương.    (đpcm)

Bình luận (0)
TM
Xem chi tiết
H24
Xem chi tiết
NH
23 tháng 1 2022 lúc 11:38

\(A=444......4\) (\(2n\) chữ số 4) \(=4.1111.....111\) (\(2n\) chữ số 1) \(=4.\dfrac{10^{2n}-1}{9}\)

\(B=222.....22\) (\(n+1\) chữ số 2) \(=2.111....11\) (\(n+1\) chữ số 1) \(=2.\dfrac{10^{n+1}-1}{9}\)

\(C=888....888\) (\(n\) chữ số 8) \(=8.111....1111\) (\(n\) chữ số 1) \(=8.\dfrac{10^n-1}{9}\)

 

\(\Leftrightarrow A+B+C+7=\dfrac{4,10^{2n}+2.10^{n+1}+8.10^n-14}{9}\)

 

Bình luận (0)
TP
Xem chi tiết
RT
10 tháng 11 2018 lúc 22:25

b) \(N=444.....44448888.....8889\) (n số 4 và n-1 số 8)

\(N=444.....44448888.....8888+1\)(n số 4 và n số 8)

\(N=444.....4444.10^n+8888.....8888+1\) (n số 4 và n số 8)

\(N=4\times11....11.10^n+8\times11....11+1\)

Đặt t= 111.....11111 (n số 1)

\(\Rightarrow10^n=9t+1\)

\(N=4t\left(9t+1\right)+8t+1\)

\(N=36t^2+4t+8t+1\)

\(N=36t^2+12t+1=\left(6t+1\right)^2\)

suy ra N là số chính phương

Bình luận (0)
PL
Xem chi tiết