Cho 4 số dương a,b,c thoả mãn:a+c=2b và c(b+d)=2bd
Cho 4 số dương thỏa mãn điều kiện a+=c=2b ; c.(b+d)=2bd . cm (a+c/ b+d )^8 = a^8+c^8/ b^8+d^8
Cho bốn số dương a, b, c, d thỏa điều kiện a + c = 2b và c( b + d) = 2bd . Chứng minh a/b=b/c
Cho bốn số dương a,b,c,d thỏa mãn điều kiện a+c=2b và c(b+d)=2bd. chứng minh(a+c/b+d)^8=a^8+c^8/b^8+d^8
Vì \(a+c=2b;dc+bc=2bd\Rightarrow\frac{dc+bc}{a+c}=\frac{2bd}{2b}=d\)
\(\Rightarrow bc+dc=\left(a+c\right)d=ad+dc\Rightarrow bc=ad\Rightarrow\frac{a}{b}=\frac{c}{d}\)
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\Rightarrow\left(\frac{a+c}{b+d}\right)^8=\left(\frac{a}{b}\right)^8\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^8=\left(\frac{c}{d}\right)^8=\frac{a^8+c^8}{b^8+d^8}\)
\(\Rightarrow\left(\frac{a+b}{c+d}\right)^8=\frac{a^8+b^8}{c^8+d^8}\)
c(b+d)2=2bd→bc+cd=2bd→bc+cd=(a+c)d→bc+cd=ad+cd
→bc=ad↔a/b=c/d
đặt a/b=c/d=k→a=ck,c=dk
(a+c/b+d)^8=(bk+dk/b+d)^8=[k(b+d)/b+d]^8=k^8
Thay tương tự ta đc điều phải chứng minh!
cho mik xin 1 like nha!!!
Cho 4 số dương a, b,c,d thỏa mãn điều kiện a+c= 2b và c( b+ d)= 2bd. Chứng minh \(\left(\frac{a+c}{b+d}\right)^8\)= \(\frac{a^8+c^8}{b^8+d^8}\)
Từ c(b+d)=2bd=>bc+cd=2bd
Ta lại có a+c =2b
Lấy vế chia vế được :\(\frac{bc+cd}{a+c}=\frac{2bd}{2b}=\)\(d\)
=>bc+cd=ad+cd=>bc=ad=>\(\frac{a}{b}=\frac{c}{d}\)
+ , \(\frac{a}{b}=\frac{c}{d}\)= \(\frac{a+c}{b+d}\)=> \(\left(\frac{a+c}{b+d}\right)^8=\left(\frac{a}{b}\right)^8\)= \(\frac{a^8}{b^8}\) (1)
+ \(\frac{a}{b}=\frac{c}{d}\)=> \(\left(\frac{a}{b}\right)^8=\left(\frac{c}{d}\right)^8\)<=>\(\frac{a^8}{b^8}=\frac{c^8}{d^8}\)=\(\frac{a^8+c^8}{b^8+d^8}\) (2)
Từ (1) và (2) ta suy ra : \(\left(\frac{a+c}{b+d}\right)^8=\frac{a^8+c^8}{b^8+d^8}\) ( đpcm)
Cho bốn số dương a,b,c,d thỏa mãn điều kiện a + c = 2b và c(b+d) = 2bd. Chứng minh rằng \(\left(\frac{a+c}{b+d}\right)^8=\frac{a^8+b^8}{c^8+d^8}\)
Bạn ơi bạn vô câu hỏi tương tự xem nhé
Học tốt
Tham khảo nhé!
>>https://olm.vn/hoi-dap/detail/80507618602.html
#)Giải :
Ta có : \(c\left(b+d\right)=2bd\Rightarrow bc+cd=2bd\Rightarrow\frac{bc+cd}{a+c}=\frac{2bd}{2b}=d\)
\(\Rightarrow bc+cd=ad+cd\Rightarrow bc=ad\Rightarrow\frac{a}{b}=\frac{c}{d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\hept{\begin{cases}\left(\frac{a}{b}\right)^8=\left(\frac{c}{d}\right)^8=\left(\frac{a+c}{b+d}\right)^8=\frac{a^8}{b^8}\\\left(\frac{a}{b}\right)^8=\left(\frac{c}{d}\right)^8=\frac{a^8}{b^8}=\frac{c^8}{d^8}=\frac{a^8+c^8}{b^8+c^8}\end{cases}}\)
\(\Rightarrow\left(\frac{a+c}{b+d}\right)^8=\frac{a^8+b^8}{c^8+d^8}\left(đpcm\right)\)
Cho 4 số a,b,c,d đều khác 0 và thỏa mãn
a+c=2b ; 2bd=c(b+d)
cm: \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
\(a+c=2b\Rightarrow2bd=\left(a+c\right).d=c.\left(b+d\right)\)
\(\Rightarrow ad+cd=cb+cd\)
\(\Rightarrow ad=cb\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(dpcm\right)\)
p/s: vì bn vt sai đề nên đề cx có thể là cm: \(\frac{a}{c}=\frac{b}{d},\frac{a}{b}=\frac{c}{d},....vv\)
nên cách làm cứ thay a+c=2b rồi làm chứ mk cx ko bt đề có pk thế ko =)
Cho 4 số dương a,b,c,d sao cho b=a+c/2 và c=2bd/b+d.Chứng minh: a/b=c/d
cho 4 số dương a , b , c , d thỏa mãn :
a+c = 2b ; c(b+d) = 2bd
CM : (a+c/ b+d)8 = (a8+c8)/(b8+d8)
Bạn ko nói rõ lớp mấy để đưa ra cách giải phù hợp.
1) Gọi chữ số hàng đơn vị là x (0 < x <9) => chữ số hàng chục là 3x
Số ban đầu có dạng 10.3x + x = 31x
Sau khi đổi chỗ số mới có dạng 10.x + 3x = 13x
Vì số mới nhỏ hơn số đã cho 18 nên có pt 31x - 13x = 18 <=> 18x = 18 => x = 1 (TMĐK)
Suy ra chữ số hàng chục là 3. Vậy số cần tìm là 31.
2) Tóm tắt thôi nhé.
Chữ số hàng chục là a, hàng đơn vị là b. => Số có dạng 10a + b và a+ b = 10
Số mới sau khi đổi chỗ là 10b + a
Giải hệ 2 pt: a + b = 10 và (10a + b) - (10b + a) = 36
được a = 7; b = 3. Vậy số cần tìm là 73.
3) Gọi a là số tự nhiên sau khi đã xóa đi 5. Số ban đầu là 10a + 5
xóa chữ số 5 thì số ấy giảm đi 1787 đơn vị nên ta có pt : 10a + 5 - 1787 = a
=> 9a = 1782 => a = 198 => Số ban đầu là 1985
cho 4 số dương a,b,c,d . Biết rằng b= a+c/2 và c= 2bd /b+d . CMR : 4 số này lập thành 1 tỉ lệ thức