Những câu hỏi liên quan
GT
Xem chi tiết
TT
17 tháng 11 2015 lúc 22:26

\(pt\Leftrightarrow9y^2-12xy+4x^2+x^2+8-48y+24x+72=0\)

<=> \(\left(3y-2x\right)^2-16\left(3y-2x\right)+64+x^2-8x+16=0\)

<=>  \(\left(3y-2x-8\right)^2+\left(x-4\right)^2=0\)

Để pt xảy ra khi và chỉ khi 

 x - 4 = 0 

3y - 2x - 8 = 0 

=> x = 4 và y = 16/3 ( loại )

Vậy không có gt x ; y nguyên tm 

Bình luận (0)
GT
17 tháng 11 2015 lúc 21:48

giải cái đã, không giải không tick

Bình luận (0)
NT
17 tháng 11 2015 lúc 21:48

mình mới học lớp 6 thôi

Bình luận (0)
H24
Xem chi tiết
PT
31 tháng 12 2017 lúc 10:40

\(5x^2+9y^2-12xy+8=24\left(2y-x-3\right)\)

\(\Leftrightarrow\left(2x-3y\right)^2+x^2+8-24\left(2y-x-3\right)=0\)

\(\Leftrightarrow\left(2x-3y\right)^2+x^2-48y+24x+80=0\)

\(\Leftrightarrow\left(2x-3y\right)^2+\left(32x-48y\right)+64+x^2-8x+16=0\)

\(\Leftrightarrow\left(2x-3y\right)^2+2.\left(2x-3y\right).8+8^2+\left(x^2-8x+16\right)=0\)

\(\Leftrightarrow\left(2x-3y+8\right)^2+\left(x-4\right)^2=0\)

Đến đây dễ rồi bạn tự làm tiếp nhé

Bình luận (0)
PN
9 tháng 8 2020 lúc 8:56

làm tiếp bài của bạn Pham Trung Thanh 

Ta thấy : \(\left(2x-3y+8\right)^2\ge0\)

\(\left(y-4\right)^2\ge0\)

Cộng theo vế ta được : \(\left(2x-3y+8\right)^2+\left(y-4\right)^2\ge0\)

Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}2x-3y+8=0\\x-4=0\end{cases}< =>\hept{\begin{cases}8-3y+8=0\\x=4\end{cases}}}\)

\(< =>\hept{\begin{cases}x=4\\16=3y< =>y=\frac{16}{3}\left(ktm\right)\end{cases}}\)

Vậy pt vô nghiệm nguyên

Bình luận (0)
 Khách vãng lai đã xóa
NV
Xem chi tiết
DA
Xem chi tiết
TA
22 tháng 5 2017 lúc 10:25

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

Bình luận (0)
TA
20 tháng 5 2017 lúc 21:53

Câu 8 bn tìm cách tách thành   

\(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

Bình luận (0)
DA
22 tháng 5 2017 lúc 11:24

đang tìm Max mà bạn Thiên AN

Bình luận (0)
AV
Xem chi tiết
TA
22 tháng 5 2017 lúc 10:25

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

Bình luận (0)
TA
22 tháng 5 2017 lúc 10:37

8. \(x^2-5x+14-4\sqrt{x+1}=0\)       (ĐK: x > = -1).

\(\Leftrightarrow\)   \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

Với mọi x thực ta luôn có:   \(\left(\sqrt{x+1}-2\right)^2\ge0\)   và   \(\left(x-3\right)^2\ge0\) 

Suy ra   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\)    \(\Leftrightarrow\)    x = 3 (Nhận)

Bình luận (0)
AV
22 tháng 5 2017 lúc 11:25

con 7 tìm Min bạn ơi

Bình luận (0)
KH
Xem chi tiết
HT
6 tháng 10 2019 lúc 8:28

a, \(x^2+y^2-2x+10y+26=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+10y+25\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+5\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-5\end{cases}}\)

b,\(4x^2+2y^2+2xy-2y+1=0\)

\(\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow\left(2x+y\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+1=0\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=1\end{cases}}\)

c,\(5x^2+9y^2-12xy+4x+4=0\)

\(\Rightarrow\left(x^2+4x+4\right)+\left(4x^2-12xy+9y^2\right)=0\)

\(\Rightarrow\left(x+2\right)^2+\left(2x-3y\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x+2=0\\2x-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\2.\left(-2\right)-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=-\frac{4}{3}\end{cases}}\)

d,\(5x^2+9y^2-6xy-4x+1=0\)

\(\Rightarrow\left(4x^2-4x+1\right)+\left(x^2-6xy+9y^x\right)=0\)

\(\Rightarrow\left(2x+1\right)^2+\left(x-3y\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}2x+1=0\\x-3y=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\-\frac{1}{2}-3y=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{1}{6}\end{cases}}\)

Bình luận (0)
KG
Xem chi tiết
NT
18 tháng 8 2023 lúc 14:17

\(5x^4+10x^2+2y^6+4y^3-6=0\)

\(\Leftrightarrow5x^4+10x^2+5+2y^6+4y^3+2-7-6=0\)

\(\Leftrightarrow5\left(x^4+2x^2+1\right)+2\left(y^6+2y^3+1\right)=13\)

\(\Leftrightarrow5\left(x^2+1\right)^2+2\left(y^3+1\right)^2=13\)

mà \(\left\{{}\begin{matrix}\left(x^2+1\right)^2\ge0,\forall x\inℤ\\\left(y^3+1\right)^2\ge0,\forall y\inℤ\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+1=1\\y^3+1=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^3=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\) thỏa mãn yêu cầu của đề bài.

Bình luận (0)
Xem chi tiết
NT
16 tháng 8 2023 lúc 11:33

a) \(35x^9y^n=5.\left(7x^9y^n\right)\)

Để \(35x^9y^n⋮\left(-7x^7y^2\right)\)

\(\Rightarrow n\in\left\{0;1;2\right\}\)

Bình luận (0)
NT
16 tháng 8 2023 lúc 11:56

b) \(5x^3-7x^2+x=3x\left(\dfrac{5}{3}x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)\)

Để \(\left(5x^3-7x^2+x\right)⋮3x^n\)

\(\Rightarrow3x\left(\dfrac{5}{3}x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)⋮3x^n\)

\(\Rightarrow n\in\left\{0;1\right\}\)

Bình luận (0)
NN
Xem chi tiết