Giải phương trình: \(\sqrt{x-\sqrt{x-\sqrt{x-\sqrt{x-5}}}}=5 \)
\(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\) (giải phương trình bên)
\(ĐK:x\ge0\\ PT\Leftrightarrow\left(\sqrt{8+\sqrt{x}}-3\right)+\left(\sqrt{5-\sqrt{x}}-2\right)=0\\ \Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+3}+\dfrac{-\sqrt{x}+1}{\sqrt{5-\sqrt{x}}+2}=0\\ \Leftrightarrow\left(\sqrt{x}-1\right)\left(\dfrac{1}{\sqrt{8+\sqrt{x}}+3}-\dfrac{1}{\sqrt{5-\sqrt{x}}+2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\\dfrac{1}{\sqrt{8+\sqrt{x}}+3}-\dfrac{1}{\sqrt{5-\sqrt{x}}+2}=0\left(vô.n_0,\forall x\ge0\right)\end{matrix}\right.\)
Vậy PT có nghiệm duy nhất \(x=1\)
Giải các phương trình sau:
a) \(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\).
b) \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
a, ĐK: \(x\ge11\)
\(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\)
\(\Leftrightarrow x+\sqrt{x-11}+x-\sqrt{x-11}+2\sqrt{x^2-x+11}=16\)
\(\Leftrightarrow2x+2\sqrt{x^2-x+11}=16\)
\(\Leftrightarrow x+\sqrt{x^2-x+11}=8\)
Ta thấy \(x+\sqrt{x^2-x+11}>11>\text{}8\)
\(\Rightarrow\) phương trình vô nghiệm.
\(a,\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\left(x\ge11\right)\\ \Leftrightarrow x+\sqrt{x-11}+x-\sqrt{x-11}+2\sqrt{\left(x+\sqrt{x-11}\right)\left(x-\sqrt{x-11}\right)}=16\\ \Leftrightarrow2x+2\sqrt{x^2-x+11}=16\\ \Leftrightarrow x+\sqrt{x^2-x+11}=8\\ \Leftrightarrow\sqrt{x^2-x+11}=8-x\\ \Leftrightarrow x^2-x+11=x^2-16x+64\\ \Leftrightarrow15x=53\\ \Leftrightarrow x=\dfrac{53}{15}\left(ktm\right)\)
\(b,\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\left(x\ge\dfrac{5}{2}\right)\\ \Leftrightarrow\sqrt{2x-5+6\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\\ \Leftrightarrow\sqrt{2x-5}+3+\left|\sqrt{2x-5}-1\right|=4\\ \Leftrightarrow\left|\sqrt{2x-5}-1\right|=1-\sqrt{2x-5}\\ \Leftrightarrow\sqrt{2x-5}-1\le0\\ \Leftrightarrow\sqrt{2x-5}\le1\\ \Leftrightarrow2x-5\le1\Leftrightarrow x\le\dfrac{5}{2}\\ \Leftrightarrow x=\dfrac{5}{2}\)
b, ĐK: \(x\ge\dfrac{5}{2}\)
\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
\(\Leftrightarrow\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-\sqrt{2x-5}}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\):
\(\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|\)
\(=\left|\sqrt{2x-5}+3\right|+\left|1-\sqrt{2x-5}\right|\)
\(\ge\left|\sqrt{2x-5}+3+1-\sqrt{2x-5}\right|\)
\(=4\)
Đẳng thức xảy ra khi:
\(\left(\sqrt{2x-5}+3\right)\left(1-\sqrt{2x-5}\right)\ge0\)
\(\Leftrightarrow1-\sqrt{2x-5}\ge0\)
\(\Leftrightarrow\sqrt{2x-5}\le1\)
\(\Leftrightarrow0\le2x-5\le1\)
\(\Leftrightarrow\dfrac{5}{2}\le x\le3\)
Giải phương trình: \(x=\sqrt{2-x}\sqrt{3-x}+\sqrt{3-x}\sqrt{5-x}+\sqrt{2-x}\sqrt{5-x}\)
Giải phương trình
\(x=\sqrt{2-x}\sqrt{3-x}+\sqrt{3-x}\sqrt{5-x}+\sqrt{5-x}\sqrt{2-x}\)
điệu kiện \(\hept{\begin{cases}x\ge0\\2-x\ge0;3-x\ge0;5-x\ge0\end{cases}< =>0\le x\le2;}\)
ta có 2x = \(2\sqrt{2-x}\sqrt{3-x}+2\sqrt{3-x}\sqrt{5-x}+2\sqrt{5-x}\sqrt{2-x}\)
<=> 2x = \(\sqrt{2-x}\left(\sqrt{3-x}+\sqrt{5-x}\right)+\sqrt{3-x}\left(\sqrt{5-x}+\sqrt{2-x}\right)\)+\(\sqrt{5-x}\left(\sqrt{2-x}+\sqrt{3-x}\right)\)
<=> 2x = \(\sqrt{2-x}\left(x-\sqrt{2-x}\right)+\sqrt{3-x}\left(x-\sqrt{3-x}\right)+\sqrt{5-x}\left(x-\sqrt{5-x}\right)\)
<=> 2x = x (\(\sqrt{2-x}+\sqrt{3-x}+\sqrt{5-x}\)) - (2-x +3-x + 5-x)
<=> 2x= x.x - 10 +3x <=> x2+x-10 = 0 <=> \(\orbr{\begin{cases}x=\frac{-1+\sqrt{41}}{2}\left(loai\right)\\x=\frac{-1-\sqrt{41}}{2}\left(loai\right)\end{cases}}\) cả 2 nghiệm đều không thỏa mãn \(0\le x\le2\)
=> phương trình vô nghiệm
ò khó quá vì mk mới hc lp 5 à
Giải phương trình:
\(x=\sqrt{2-x}\sqrt{3-x}+\sqrt{3-x}\sqrt{5-x}+\sqrt{5-x}\sqrt{2-x}..\)
ĐK: \(x\le2\)
pt <=> \(2=2-x+\sqrt{2-x}\sqrt{3-x}+\sqrt{3-x}\sqrt{5-x}+\sqrt{5-x}\sqrt{2-x}.\)
<=> \(2=\sqrt{2-x}\left(\sqrt{2-x}+\sqrt{3-x}\right)+\sqrt{5-x}\left(\sqrt{2-x}+\sqrt{3-x}\right).\)
<=> \(2=\left(\sqrt{2-x}+\sqrt{3-x}\right)\left(\sqrt{5-x}+\sqrt{2-x}\right).\)
<=> \(2\left(\sqrt{5-x}-\sqrt{2-x}\right)=3\left(\sqrt{2-x}+\sqrt{3-x}\right)\)( vì \(\sqrt{5-x}-\sqrt{2-x}\ne0;\forall x\inℝ\))
<=> \(2\sqrt{5-x}=5\sqrt{2-x}+3\sqrt{3-x}\)
<=> \(4\left(5-x\right)=25\left(2-x\right)+9\left(3-x\right)+30\sqrt{\left(2-x\right)\left(3-x\right)}\)
<=> \(-57+30x=30\sqrt{\left(2-x\right)\left(3-x\right)}\)
<=> \(\hept{\begin{cases}30x-57\ge0\\900x^2-3420x+3249=900x^2-4500x+5400\end{cases}}\)
<=> \(\hept{\begin{cases}x\ge\frac{57}{30}\\x=\frac{239}{120}\end{cases}}\Leftrightarrow x=\frac{239}{120}\)tmđk
Giải phương trình \(\sqrt{x-\sqrt{x-\sqrt{x-\sqrt{x-5}}}}\)=5
đặt \(\sqrt{x-\sqrt{x-5}}=a\left(a\ge0\right)=>x-\sqrt{x-5}=a^2\) (1)
viết lại phương trình trên \(\sqrt{x-\sqrt{x-a}}=5< =>x-\sqrt{x-a}=25\)(2)
(1) - (2) = \(\sqrt{x-a}-\sqrt{x-5}=a^2-25\) (3)
xét \(\sqrt{x-a}+\sqrt{x-5}=0< =>\hept{\begin{cases}x-a=0\\x-5=0\end{cases}< =>}\)\(\hept{\begin{cases}x=\sqrt{x-\sqrt{x-5}}\\x=5\end{cases}}\)(vô nghiệm)
hay \(\sqrt{x-a}+\sqrt{x-5}\ne0\)
(3) <=> \(\frac{x-a-\left(x-5\right)}{\sqrt{x-a}+\sqrt{x-5}}=\left(a-5\right)\left(a+5\right)\)<=>\(\frac{5-a}{\sqrt{x-a}+\sqrt{x-5}}+\left(5-a\right)\left(5+a\right)=0\)
<=> (5-a)(\(\frac{1}{\sqrt{x-a}+\sqrt{x-5}}+a+5\)) = 0 <=> 5-a = 0 ( vì với a\(\ge0\)thì \(\frac{1}{\sqrt{x-a}+\sqrt{x-5}}+a+5>0\))
<=> a=5 <=> \(\sqrt{x-\sqrt{x-5}}=5< =>x-\sqrt{x-5}=25< =>x-25=\sqrt{x-5}\left(x\ge25\right)\)
<=> x2 -50x + 625 = x - 5 <=> x2- 51x +630 = 0 <=> (x-30)(x-21) = 0 <=> x= 30 hoặc x= 21 ( loại vì điều kiện \(x\ge25\))
thay vào phương trình ta thấy x= 30 thỏa mãn nên phương trình có nghiệm duy nhất x=30
giải phương trình : \(\sqrt{x-\sqrt{x-\sqrt{x-\sqrt{x-5}}}}\)= 5
sao bình phương dài thế
lúc đầu mình ko hiểu xong mãi mới hiểu
Giải phương trình:
\(\sqrt{x-2+\sqrt{2x-5}+\sqrt{x+2+3\sqrt{2x-5}}}=7\sqrt{2}\)
ĐK:\(x\ge\dfrac{5}{2}\)
Ta có:\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)
\(\Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=7.2\)
\(\Leftrightarrow\sqrt{2x-5+2\sqrt{2x-5}+1}+\sqrt{2x-5+6\sqrt{2x-5}+6}=14\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)
\(\Leftrightarrow\sqrt{2x-5}+1+\sqrt{2x-5}+3=14\)
\(\Leftrightarrow2\sqrt{2x-5}=10\)
\(\Leftrightarrow\sqrt{2x-5}=5\)
\(\Leftrightarrow2x-5=25\Leftrightarrow2x=30\Leftrightarrow x=15\left(tm\right)\)
ĐKXĐ: \(x\ge\dfrac{5}{2}\)
\(\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=14\)
\(\Leftrightarrow\sqrt{2x-5+2\sqrt{2x-5}+1}+\sqrt{2x-5+6\sqrt{2x-5}+3}=14\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)
\(\Leftrightarrow2.\sqrt{2x-5}+4=14\)
\(\Leftrightarrow\sqrt{2x-5}=5\)
\(\Leftrightarrow x=15\)
Giải các phương trình sau :
1/\(\sqrt{x+2+4\sqrt{x-2}}=5\)
2/\(\sqrt{x+3+4\sqrt{x-1}}=2\)
3/\(\sqrt{x+\sqrt{2x-1}}=\sqrt{2}\)
4/\(\sqrt{x-2+\sqrt{2x-5}}=3\sqrt{2}\)
\(1,\sqrt{x+2+4\sqrt{x-2}}=5\left(x\ge2\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-2}+4\right)^2}=5\\ \Leftrightarrow\sqrt{x-2}+4=5\\ \Leftrightarrow\sqrt{x-2}=1\\ \Leftrightarrow x-2=1\Leftrightarrow x=3\\ 2,\sqrt{x+3+4\sqrt{x-1}}=2\left(x\ge1\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-1}+4\right)^2}=2\\ \Leftrightarrow\sqrt{x-1}+4=2\\ \Leftrightarrow\sqrt{x-1}=-2\\ \Leftrightarrow x\in\varnothing\left(\sqrt{x-1}\ge0\right)\)
\(3,\sqrt{x+\sqrt{2x-1}}=\sqrt{2}\left(x\ge\dfrac{1}{2};x\ne1\right)\\ \Leftrightarrow x+\sqrt{2x-1}=2\\ \Leftrightarrow x-2=-\sqrt{2x-1}\\ \Leftrightarrow x^2-4x+4=2x-1\\ \Leftrightarrow x^2-6x+5=0\\ \Leftrightarrow\left(x-5\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=1\left(loại\right)\end{matrix}\right.\)
\(4,\sqrt{x-2+\sqrt{2x-5}}=3\sqrt{2}\left(x\ge\dfrac{5}{2}\right)\\ \Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}=6\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}=6\\ \Leftrightarrow\sqrt{2x-5}+1=6\\ \Leftrightarrow\sqrt{2x-5}=5\\ \Leftrightarrow2x-5=25\Leftrightarrow x=15\left(TM\right)\)
giải phương trình
\(\sqrt{x^2-25}-6=2\sqrt{x-5}-3\sqrt{x+5}\)
=>\(x^2+9-12\sqrt{x^2-25}=13x+5-12\sqrt{x^2-25}\)
<=> \(x^2-13x+4=0\)
........
\(=>x^2+11-12\sqrt{x^2-25}=13x+25-12\sqrt{x^2-25}\)
\(< =>x^2-13x-14=0\)
\(< =>\left(x+1\right)\left(x-14\right)=0\)
..............