cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng \(\frac{3a+2c}{3b+2d}=\frac{-5b+3c}{-5d+3d}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh
a)\(\frac{3a+5b}{3a-5b}=\frac{3c+5d}{3c-5d}\)
b)\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\).chứng minh
a)\(\frac{3a+5b}{3a-5b}=\frac{3c+5d}{3c-5d}\)
b) \(\frac{2a+3b}{2a-3b}\)=\(\frac{2c+3d}{2c-3d}\)
cho tỉ lệ thức\(\frac{a}{b}=\frac{c}{d}\).chứng minh
a) \(\frac{3a+5b}{3a-5b}=\frac{3c+5b}{3c-5b}\)
b)\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\)
CMR: \(\frac{3a+2c}{3b+2d}=\frac{-5a+3c}{-5b+3d}\)
Áp dụng tính chất DTS bằng nhau:
\(\frac{a}{b}=\frac{c}{d}=\frac{3a}{3b}=\frac{2c}{2d}=\frac{3a+2c}{3b+2d}\)
\(\frac{a}{b}=\frac{c}{d}=\frac{-5a}{-5b}=\frac{3c}{3d}=\frac{-5a+3c}{-5b+3d}\)
Vậy....
cho a\(\frac{a}{b}=\frac{c}{d}\)với a không bằng 0, c không bằng 0, a không bằng b, b không bằng d chứng minh rằng
a) \(\frac{3a+2c}{3b+2d}=\frac{-5a+3c}{-5b+3d}\)
b) \(\frac{a-d}{b}=\frac{c-d}{d}\)
mik đang cần gấp
đặt a/b=c/d=k =>a=bk;c=dk
A)thay a và c vào (3a+2c)/(3b+2d)và (-5a+3c)/(-5b+3d)
+)(3bk+2dk)/(3b+2d)=k
+)(-5bk+3dk)/(-5b+3d)=k
vậy.....................................................................................................
B)thay a=bk;c=dk vào 2 biểu trên ta có
+)(bk-b)/b=k-1
+)(dk-d)/d=k-1
(bạn sai đề bài r chỗ a-d thành a-b)
cho tỉ lệ thức : a/b=c/d. Chứng minh
a) 3a+5b/3a-5b=3c+5d/3c-5d
b) 2a+3b/2a-3b=2c+2c-3d
Cho \(\frac{a}{b}=\frac{c}{d}\)
a) Chứng minh \(\frac{3a+2c}{3d+2d}=\frac{3c-5a}{3d-5b}\)
b) Chứng minh \(\frac{a^2}{b^2}=\frac{2c^2-ac}{2d^2-bd}\)
Cko \(\frac{a}{b}=\frac{c}{d}\). CMR:
\(\frac{3a+2c}{3b+2d}=\frac{-5a+3c}{-5b+3d}\)
Khó k nhỉ???
Tự tl v!
Áp dụng tính chất DTS bằng nhau ,ta có:
\(\frac{a}{b}=\frac{3a}{3b}=\frac{2c}{2d}=\frac{3a+2c}{3b+2d}\)
\(\frac{a}{b}=\frac{-5a}{-5b}=\frac{3c}{3d}=\frac{-5a+3c}{-5b+3d}\)
Vậy....
Cho a, b, c, d là các số thực dương. Chứng minh :
\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\ge\frac{2}{3}\)