cho \(M=x^2+y^2-xy\) và x-y=2
tìm x,y để M đạt giá trị nhỏ nhất, tìm giá trị nhỏ nhất đó
Cho biểu thức : M = x2 – 5x + y2 + xy – 4y + 2019.
Với giá trị nào của x, y thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.
2.M = 2x2 – 10x + 2y2 + 2xy – 8y + 4038 = (x2 – 10x + 25) +( y2 + 2xy + y2) + ( y2 – 8y + 16) + 3997
= (x-5)2 + (x+y)2 + (y - 4)2 + 3997 = N + 3997
Áp dụng bất đẳng thức Bu- nhi a: (ax+ by + cz)2 \(\le\) (a2+ b2 + c2). (x2 + y2 + z2). Dấu bằng xảy ra khi a/x = b/y = c/z
Ta có: [(5 - x).1 + (x+ y).1 + (y + 4).1]2 \(\le\) [(5 - x)2 + (x+y)2 + (y - 4)2 ].(1+ 1+1) = N .3 = 3.N
<=> 92 = 81 \(\le\) 3.N => N \(\ge\) 27 => 2.M \(\ge\) 27 + 3997 = 4024
=> M \(\ge\)2012
vậy Min M = 2012
khi 5 - x = x+ y = y + 4 => x = 4 ; y = -3
Tìm m để 2 đường thẳng x-y=3-m và y=3x-m-3 cắt nhau tại 1 điểm B(x;y) để P=y^2-3x^2 đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
Ta có : x - y = 3 - m
=> y = x - 3 + m (1)
Lại có y = 3x - m - 3 (2)
Từ (1) và (2) => 2y = 4x - 6
=> y = 2x - 3
Khi đó P = (2x - 3)2 - 3x2
= x2 - 12x + 9 \(=\left(x-6\right)^2-27\ge-27\)
Dấu "=" xảy ra <=> x = 6
Khi x = 6 => y = 9 => m = 6
Vậy khi m = 6 thì PMin = -27
Biết cặp số (x; y) là nghiệm của hệ x + y = 2 m x 2 + y 2 = 2 m + 2 . Tìm giá trị của m để P = xy – 3 (x + y) đạt giá trị nhỏ nhất.
A. m = - 7 2
B. m = −7
C. m = 7
D. m = 7 2
Biết cặp số (x; y) là nghiệm của hệ x + y = m x 2 + y 2 = - m 2 + 6 . Tìm giá trị của m để P = xy + 2(x + y) đạt giá trị nhỏ nhất.
A. m = −1
B. m = −2
C. m = 1
D. m = 0
Tìm giá trị của x và y để :
S=|x+2|+|2.y-10|+2012 đạt giá trị nhỏ nhất .Tìm giá trị nhỏ nhất đó
Do |x+2| > hoặc =0
|2y-10| > hoặc =0
=>|x+2|+|2y-10| > hoặc =0
=>___________+2012 > hoặc=0+2012=2012
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left|x+2\right|=0\\\left|2y-10\right|=0\end{cases}}\)=>\(\hept{\begin{cases}x+2=0\\2y-10=0\end{cases}}=>\hept{\begin{cases}x=0-2=-2\\y=\left(0+10\right):2=5\end{cases}}\)
Vậy x=-2;y=5 <=> S=2012
\(\text{Bài giải}\)
\(\text{Ta có : }S=\left|x+2\right|+\left|2y-10\right|+2012\)
\(\text{Do }\left|x+2\right|\ge0\)
\(\left|2y-10\right|\ge0\)
\(\Rightarrow\text{ }\left|x+2\right|+\left|2y-10\right|\ge0\)
\(\Rightarrow\text{ }\left|x+2\right|+\left|2y-10\right|+2012\ge0+2012=2012\)
\(\text{Dấu "}=\text{" xảy ra khi :}\)
\(\hept{\begin{cases}\left|x+2\right|=0\\\left|2y-10\right|=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x+2=0\\2y-10=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x=0-2=-2\\y=\left(0+10\right)\text{ : }2=5\end{cases}}\)
\(\text{Thay }x=-2\text{ , }y=5\text{ ta có : }\)
\(S=\left|-2+2\right|+\left|2\cdot5-10\right|+2012\)
\(S=0+\left|10-10\right|+2012\)
\(S=0+0+2012\)
\(S=2012\)
\(\text{Vậy }GTNN\text{ của }S=2012\text{ khi }x=-2\text{ và }y=5\)
Ta có: \(S=\left|x+2\right|+\left|2y-10\right|+2012\)
\(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|2y-10\right|\ge0\end{cases}\Rightarrow}\left|x+2\right|+\left|2y-10\right|\ge0\)
\(\Rightarrow\left|x+2\right|+\left|2y-10\right|+2012\ge2012\Leftrightarrow S\ge2012\)
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left|x+2\right|=0\\\left|2y-10\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x+2=0\\2y-10=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=5\end{cases}}.\)
cho biểu thức A\(=X^4-6X^3+18x^2-6xy+y^2+2012\)
tìm x,y để A đạt giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó
`A=x^4-6x^3+18x^2-6xy+y^2+2012`
`=x^4-6x^3+9x^2+9x^2-6xy+y^2+2012`
`=(x^2-x)^2+(3x-y)^2+2012>=2012`
Dấu "=" xảy ra khi:
$\begin{cases}x=x^2\\y=3x\end{cases}$
`<=>` $\left[ \begin{array}{l}\begin{cases}x=0\\y=3x=0\\\end{cases}\\\begin{cases}x=1\\y=3x=3\\\end{cases}\end{array} \right.$
Vậy `min_A=2012<=>` $\left[ \begin{array}{l}x=y=0\\\begin{cases}x=1\\y=3\end{cases}\end{array} \right.$
Tìm giá trị của x và y để :
S = x + 2 + 2y –10 + 2011 đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó .
tìm giá trị của x và y để: S = /x+2\ + /2 x y-10 \ + 2014 đạt giá trị nhỏ nhất.Tìm giá trị nhỏ nhất đó
cho A = xy^2+ y^2(y^2 -x) +1 /x^2.y^4+2y^2+x^2 +2. Tìm giá trị của biến để A đạt giá trị nhỏ nhất