chứng tỏ rằng tổng hoặc hiệu của một số tự nhiên với một phân số tối giản là một phân số tối giản
chứng minh rằng tổng hoặc hiệu của một số tự nhiên với một phân số tối giản là một phân số tối giản
chứng minh rằng tổng hoặc hiệu của 1 số tự nhiên với 1 phân số tối giản là 1 phân số tối giản
Vì ki phân số đó tói giản thì tử ko thể chi hết cho mẫu.
Còn một số tự nhiên thì chia hết cho mẫu.
Khi số ko chia hết cho một cộng với một số chia hết cho số đó =>Phân số đó tối giản
Khi số ko chia hết cho một trừ với một số chia hết cho số đó=> Phân số đó tối giản
Chứng minh rằng tổng của số tự nhiên với một phân số tối giản là một phân số tối giani
CMR: Tổng hoặc hiệu của 1 số tự nhiên với 1 phân số tối giản là 1 phân số tối giản.
cmr: tổng của một phân số tối giản với một số tự nhiên cũng là một phân số tối giản
Chứng tỏ rằng với mọi số tự nhiên n thì P= \(\dfrac{3n+2}{6n+5}\) là một phân số tối giản.
Gọi \(d=ƯC\left(3n+2;6n+5\right)\) với \(d\ge1;d\in N\)
\(\Rightarrow\left\{{}\begin{matrix}3n+2⋮d\\6n+5⋮d\end{matrix}\right.\)
\(\Rightarrow6n+5-2\left(3n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow3n+2\) và \(6n+5\) nguyên tố cùng nhau
Hay P tối giản
Tổng của hai phân số tối giản là một số nguyên. Chứng tỏ rằng mẫu của hai phân số đó là hai số bằng nhau hoặc là hai số đối nhau.
Gọi 2 phân số đó là \(\frac{a}{b},\frac{c}{d}\) với \(\left(a;b\right)=1;\left(c;d\right)=1\)
Ta có :
\(\frac{a}{b}+\frac{c}{d}=x\left(x\in Z\right)\)
\(\frac{a}{b}.bd+\frac{c}{d}bd=xbd\)
\(\rightarrow ad+bc=xbd\)
\(\rightarrow\begin{cases}ad=xbd-bc=b\left(xd-c\right)\\bc=xbd-ad=d\left(xb-a\right)\end{cases}\)
Ta có : \(ad=b\left(xd-c\right)\rightarrow ad⋮b\)
Mà : \(\left(a;b\right)=1\) nên \(d⋮b\left(1\right)\)
Tương tự thì \(b⋮d\left(2\right)\)
Từ (1)(2) \(\Rightarrow b=d\) hoặc \(b=-d\)
-> Điều phải chứng minh .
Tổng của 2 phân số tối giản là một số nguyên. Chứng tỏ rằng mẫu của 2 phân số đó là 2 số bằng nhau hoặc là 2 số đối nhau?
tổng hai phân số tối giản là một số nguyên.Chứng tỏ rằng ,mẫu hai phân số đó là hai số bằng hoặc đối nhau