Chứng minh rằng phân số \(\frac{2n+3}{n+1}\) là phân số tối giản
các bn ơi giúp mình với
CHỨNG MINH RẰNG VỚI MỌI SỐ NGUYÊN n THÌ CÁC PHÂN SỐ SAU LÀ PHÂN SỐ TỐI GIẢN : 2n+3/4n+8
"CÁC BẠN ƠI ! GIÚP MÌNH VỚI 6:30 MÌNH PHẢI CHỤP ẢNH GỬI BÀI CHO CÔ RỒI"
"NGHỈ TRỐNG DỊCH VÀ CÁI KẾT:)))))"
Gọi ƯCLN(2n + 3 ; 4n + 8) = d
=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\Rightarrow4n+8-\left(4n+6\right)⋮d}\)
=> \(2⋮d\Rightarrow d\inƯ\left(2\right)\Rightarrow d\in\left\{\pm1;\pm2\right\}\)
Vì 2n + 3 là số lẻ ; 4n + 8 là số chẵn
=> ƯCLN(2n + 3 ; 4n + 8) \(\ne\)\(\pm\)2
=> ƯCLN(2n + 3 ; 4n + 8) \(=\pm1\)
=> \(\frac{2n+3}{4n+8}\)là phân số tối giản
+)Gọi d là số nguyên tố là ƯCLN(2n+3,4n+8)
+)2n+3\(⋮\)d;4n+8\(⋮\)d
+)2n+3\(⋮\)d
=>2.(2n+3)\(⋮\)d
=>4n+6\(⋮\)d(1)
+)4n+8\(⋮\)d
+)Từ (1) và (2)
=>(4n+8)-(4n+6)\(⋮\)d
=>4n+8-4n-6\(⋮\)d
=>2\(⋮\)d
=>d\(\in\)Ư(2)={1;2}
Vì 2n+3\(⋮̸\)2
=>ƯCLN(2n+3,4n+8)=1
Vậy \(\frac{2n+3}{4n+8}\)tối giản với mọi n
Chúc bn học tốt.Có j ko hiểu hỏi mk nha
Anh Xyz ơi
ƯCLN không là số âm anh ơi mong a xem lại a
Chúc anh học tốt
chứng minh rằng mọi phân số có dạng \(\frac{n+1}{2n+3}\)với ( n thuộc N ) đều là phân số tối giản
Để phân số n+1/2n+3 là phân số tối giản thì (n+1; 2n+3) =1
Gọi (n+1; 2n+3) =d => n+1 \(⋮\)d; 2n+3 \(⋮\)d
=> (2n+3) - (n+1) \(⋮\)d
=> (2n+3) -2(n+1) \(⋮\)d
=> 2n+3 -2n -2 \(⋮\)d
=> 1 \(⋮\)d
=> n+1/2n+3 là phân số tối giản
Vậy...
Gọi d là ƯC(n+1 ; 2n + 3)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)
=> ( 2n + 3 ) - ( 2n + 2 ) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(n +1 ; 2n + 3) = 1
=> \(\frac{n+1}{2n+3}\)tối giản ( đpcm )
Với mọi số tự nhiên n, hãy chứng minh rằng các phân số sau đây tối giản
A=2n+1/4n+3
B=4n+1/12n+7
C=7n+4/9n+5
Giúp mik nha
Chứng minh rằng tổng của một phân số tối giản với một số tự nhiên cũng là môt phân số tối giản
Chứng minh rằng phân số 2n+3/2n+5 là phân số tối giản.
\(\frac{2n+3}{2n+5}=\frac{2n+2+1}{2n+2+3}=\frac{2\left(n+1\right)+1}{2\left(n+1\right)+3}\)Ta thấy phân số trên có tử và mẫu là 2 số lẽ liên tiếp nên là phân số tối giản.
Chứng minh rằng\(\frac{14n+3}{21n+5}\) là phân số tối giản với mọi số nguyên n
Gọi d = ƯCLN ( 14n + 3 ; 21n + 5 )
Ta có :
14n + 3 \(⋮\)d ; 21n + 5 \(⋮\)d
=> 3 ( 14n + 3 ) \(⋮\)d ; 2 ( 21n + 5 ) \(⋮\)d
=> 42n + 9 \(⋮\)d ; 42n + 10 \(⋮\)d
=> ( 42n + 10 ) - ( 42n + 9 ) \(⋮\)d
=> 1 \(⋮\)d
=> d \(\in\){ 1 ; - 1 }
=> \(\frac{14n+3}{21n+5}\)là phân số tối giản
kho ng bi et
Chứng minh rằng hai phân số sau tối giản với mọi STN n
a n+1 /2n+3
b 2n+3 / 4n+8
c 3n+2 / 5n+3
Giải nhanh hộ mk nha . Cảm Ơn các bn
a) Gọi d là ƯCLN(n + 1, 2n + 3), d ∈ N*
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n+1,2n+3\right)=1\)
\(\Rightarrow\frac{n+1}{2n+3}\) là phân số tối giản.
b) Gọi d là ƯCLN(2n + 3, 4n + 8), d ∈ N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n + 3 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)
\(\Rightarrow\frac{2n+3}{4n+8}\) là phân số tối giản.
c) Gọi d là ƯCLN(3n + 2, 5n + 3), d ∈ N*
\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}}}\)
\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(3n+2,5n+3\right)=1\)
\(\Rightarrow\frac{3n+2}{5n+3}\) là phân số tối giản.
Gọi d là ƯCLN của n + 1 , 2n + 3
=> n + 1 chia hết cho d , 2n + 3 chia hết cho d
=> 2(n + 1) chia hết cho d , 2n + 3 chia hết cho d
=> 2n + 2 chia hết cho d , 2n + 3 chia hết cho d
=> 2n + 3 - 2n - 2 chia HẾT CHO d
=> 1 chia hết cho d
=> d = 1
Vậy n + 1/2n + 3 tối giản với mọi số n
b,c tương tự
HÀ THANH THẢO:
Bài này dài quá. Thôi chiều ý bạn vậy!!!
a, n + 1/ 2n + 3
Ta gọi a là ƯCLN (n + 1; 2n + 3)
Theo bài ra, ta có:
n + 1 \(⋮\)a; 2n + 3 \(⋮\)a
=> 2n + 1 chia hết cho a; 2n + 3 chia hết cho a
Ta lại có:
2n + 2 chia hết cho a; 2n + 3 chia hết cho a
=> 2n + 3 - 2n + 2 \(⋮\)a
=> 1 \(⋮\)a
Vậy a = 1
Câu b và c: bạn tự áp dụng vào:
^_^, Chúc bạn học tốt!!!
Cho a/b là phân số tối giản. Chứng minh rằng phân số sau tối giản: a/a-b
chứng tỏ rằng \(\frac{n+2}{2n+3},\left(n\in N\right)\)là phân số tối giản.
gọi d là ƯCLN ( n + 2 ; 2n + 3 )
Ta có : n + 2 \(⋮\)d \(\Rightarrow\)2 . ( n + 2 ) \(⋮\)d ( 1 )
2n + 3 \(⋮\)d ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)2 . ( n + 2 ) - ( 2n + 3 )
= ( 2n + 4 ) - ( 2n + 3 ) = 1 \(⋮\)d
\(\Rightarrow\)d = 1
Mà phân số tối giản thì có ƯCLN của tử số và mẫu số bằng 1
Vậy phân số \(\frac{n+2}{2n+3}\)là phân số tối giản
để phân số là phân số tối giản điều kiên là : \(\left(n+2;2n+3\right)=1\)
Ta gọi ước chung lớn nhất của \(n+2;2n+3\)là \(d\)ta có: \(\hept{\begin{cases}n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+2\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+4⋮d\\2n+3⋮d\end{cases}}}\)
\(\Rightarrow n+4-\left(n+3\right)⋮d\Rightarrow n+4-n-3⋮d\)\(\Rightarrow1⋮d\Leftrightarrow1\)
do đó \(UCLN\left(n+2;2n+3\right)=1\)vậy phân số là phân số tối giản
ta có:giả sử ƯCLN (n+2 ;2n+3)=d
ta có n+2=2(n+2)=2n+4 (1)
2n+3=2n+3 (2)
Từ (1) và (2)
ta có :(2n+4)-(2n+3) chia hết cho d
1 chia hết cho d
d thuộc ước của 1
nên n+2 và 2n+3 nguyên tố cùng nhau
Vậy n+2/2n+3 là phân số tối giản