Tìm GTNN của:
\x+y/+(y-4)^2 +2013
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho x, y là số dương thỏa mãn x+y = 2. Tìm GTNN của biểu thức :
P= (x4+1).(y4+1)+2013.
Giúp mình với.
\(2=x+y\ge2\sqrt{xy}\Rightarrow xy\le1.\)
\(\left(x^4+1\right)\left(y^4+1\right)+2013\ge2x^2.2y^2+2013\ge4+2013=2017\)
Min=2017
Dấu "=" xảy ra khi x=y=1
Cho các số thực x,y sao cho : x2013 +y2013= 2.x1006.y1006
Tìm GTNN của 1- xy
=> [x^2013+y^2013]^2 = 4.x^2012.y^2012
[x^2013+y^2013]^2 \(\ge\)4.x^2013.y^2013= >4.x^2012.y^2012\(\ge\)4.x^2013.y^2013 => 1 \(\ge\) xy => 1-xy \(\ge\) 0
Dấu bằng xảy ra khi x=y= 1
Vậy min 1-xy = 0 khi x=y=1
Biết x+y=3; y>=2. Tìm GTNN của 2x2+y2-3x+2013
tìm GTNN của |x-2011|+|x-2012|-|y+2013|+|x-2014|
a) Tìm GTLN của A = 2013 - /3-y/ - ( x-y) \(^2\)
b) Tìm GTNN của B= -9 + X\(^2\)+ / 2Y-6/
Cho x,y là các số thực , với : \(x\ge\sqrt{2013}+\sqrt{2014};x+y\ge\sqrt{2013}+\sqrt{2014}+\sqrt{2015}\)
\(\text{Tìm GTNN của : }S=x^2+y^2\)
mk mới có lớp 6 ak nhìn ko hiểu gì cả
Tìm x; y nguyên để |x + 2013| + |y - 2012| đạt GTNN
|x + 2013| lớn hơn hoặc bằng 0,|y - 2012| lớn hơn hoặc bằng 0
=>|x + 2013| + |y - 2012| lớn hơn hoặc bằng 0
khi |x + 2013| + |y - 2012| lớn hơn hoặc bằng 0 thì x=-2013,y=2012
vậy x=-2013,y=2012
tick nhé
1) Tìm GTNN của các biểu thức:
a) P= (|x-3|+2)2 + |y+3|+2007
b) Q= |x-2008| + |x-2009|
3) A= |2x-2|+|2x-2013|
4) B= |2013-x| + |2014-x|
5) C= |x-2014|+|2015-x|+|x-2016|
6) D= |x-2|+|x-9|+|x+1945|
1. a) Ta có:
|x-3| > 0
=> |x-3| + 2 > 2
=> (|x-3| + 2)2 > 22 = 4
|y+3| > 0
=> P = (|x-3|+2)2 + |y+3| + 2007 > 4 + 0 + 2007 = 2011
=> GTNN của P là 2011
<=> x-3 = y+3 = 0
<=> x = 3; y = -3.
1) Tìm GTNN của các biểu thức:
a) P= (|x-3|+2)2 + |y+3|+2007
b) Q= |x-2008| + |x-2009|
3) A= |2x-2|+|2x-2013|
4) B= |2013-x| + |2014-x|
5) C= |x-2014|+|2015-x|+|x-2016|
6) D= |x-2|+|x-9|+|x+1945|
a) \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|=2007\)
Ta có: \(\left|x-3\right|\ge0\forall x\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2\ge\left(0+2\right)^2=2^2=4\)
Lại có: \(\left|y+3\right|\ge0\forall y\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|\ge4+0=4\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\ge4+2007=2011\)
\(\Rightarrow P_{MIN}=2011\)
Dấu "=" xảy ra khi \(\Leftrightarrow\orbr{\begin{cases}\left|x-3\right|=0\\\left|y+3\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\y=-3\end{cases}}}\)
Vậy \(P_{MIN}=2011\) tại \(\orbr{\begin{cases}x=3\\y=-3\end{cases}}\)