Rút gọn: \(\sqrt{1+x^2+\frac{x^2}{\left(x+1\right)^2}}+\frac{1}{x+1}\)
rút gọn\(\left(\frac{\sqrt{x}+1}{x-1}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\times\frac{1-x^2}{2}\)
Rút gọn P
\(P=\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\left(\frac{1}{2\sqrt{x}}-\frac{\sqrt{x}}{2}\right)^2\)
\(P=\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\left(\frac{1}{2\sqrt{x}}-\frac{\sqrt{x}}{2}\right)^2\)
\(P=\left[-\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\left(-\frac{\sqrt{x}}{2}+\frac{1}{2\sqrt{x}}\right)^2\)
\(P=\left[-\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\left(\frac{1}{4x}+\frac{1}{4}-\frac{1}{2}\right)\)
\(P=-\frac{4\sqrt{x}.\left(\frac{1}{4x}-\frac{1}{2}+\frac{x}{4}\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(P=-\frac{4.\frac{x^2-2x+1}{4x}.\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)
\(P=-\frac{\frac{x^2-2x+1}{\sqrt{x}}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(P=-\frac{x^2-2x+1}{\sqrt{x}.\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(P=-\frac{\sqrt{x}.\left(x-1\right)}{x}\)
Rút gọn P=\(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\left(\frac{1-x}{\sqrt{2}}\right)^2\)
kết quả là \(\sqrt{x}\left(1-\sqrt{x}\right)\) phải k mọi người
Rút gọn biểu thức: \(A=\left(\frac{\sqrt{x}-1}{x-1}+\frac{2-2\sqrt{x}}{x\sqrt{x}+x-\sqrt{x}-1}\right):\left(\frac{\sqrt{x}+2}{x+\sqrt{x}-2}-\frac{2}{x-1}\right)\)
ĐK : x>0, x khác 1
\(A=\left(\frac{1}{\sqrt{x}+1}+\frac{2\left(1-\sqrt{x}\right)}{x\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{2}{x-1}\right)\)
\(=\left(\frac{1}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\frac{\sqrt{x}+1-2}{\left(\sqrt{x}+1\right)^2}:\frac{\sqrt{x}+1-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
1 \(P=\left(1-\frac{4}{\sqrt{x}+1}-\frac{1}{x-1}\right):\frac{x-2\sqrt{x}}{x-1}\)
rút gọn P
2 \(A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1}\right):\left(\frac{2}{x}-\frac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)
a, rút gọn A
b, tính P khi \(x=\frac{2}{2-\sqrt{3}}-2\sqrt{3}\)
cho S=1-3+32-33+...+398-399
a. Chứng minh: S chia hêt cho 20
b. Rút gọn S, từ đó suy ra 3100 chia 4 dư 1
chịu
\(A=\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right).\left(\frac{x-1}{\sqrt{2}}\right)^2\)
Rút gọn
\(A=\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right)\cdot\left(\frac{x-1}{\sqrt{2}}\right)^2\)
\(=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{x-1}\right)\cdot\frac{\left(x-1\right)^2}{2}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(x-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(x-1\right)}\cdot\frac{\left(x-1\right)^2}{2}\)
\(=\frac{x\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(x-1\right)}\cdot\frac{\left(x-1\right)^2}{2}\)
\(=\frac{x}{\sqrt{x}+1}\cdot\frac{x-1}{2}=\frac{x^2-x}{2\sqrt{x}+2}\)
Thắng Nguyễn cảm ơn cách làm của bạn nhưng bạn chưa rút gọn hết
\(A=\frac{x^2-x}{2\sqrt{x}+2}\)
\(A=\frac{x\left(x-1\right)}{2\left(\sqrt{x}+1\right)}\)
\(A=\frac{x\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}+1\right)}\)
\(A=\frac{x\left(\sqrt{x}-1\right)}{2}\)
Nhưng dù sao cũng cảm ơn rất nhiều
Rút gọn
\(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right)\cdot\left(\frac{\sqrt{x}+1}{\sqrt{x}}\right)\)
\(=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\sqrt{x}^2-1}\right).\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=\frac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{2}{\sqrt{x}^2-1}=\frac{2}{x-1}\)
Rút gọn: \(A=\left(\frac{1}{\sqrt{x}-\sqrt{x-1}}-\frac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\frac{2}{\sqrt{2}-\sqrt{x}}-\frac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)
Rút gọn A=\(\left(\frac{\sqrt{x}}{\sqrt{x-1}}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)
Trả lời:
\(A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right)\div\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)
\(A=\left[\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right]\div\left[\frac{1}{\sqrt{x}+1}+\frac{2}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}\right]\)
\(A=\left[\frac{\sqrt{x}.\sqrt{x}}{\sqrt{x}.\left(\sqrt{x}-1\right)}-\frac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right]\div\left[\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}+\frac{2}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}\right]\)
\(A=\left[\frac{x-1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right]\div\left[\frac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}\right]\)
\(A=\left[\frac{x-1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right]\div\left[\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}\right]\)
\(A=\frac{x-1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\div\frac{1}{\sqrt{x}-1}\)
\(A=\frac{x-1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\times\frac{\sqrt{x}-1}{1}\)
\(A=\frac{x-1}{\sqrt{x}}\)
Học tốt
\(ChoQ=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\left(\frac{1-x}{\sqrt{2}}\right)^2\)
a, rút gọn
b, chứng minh nếu 0<x<1 thì Q>0
c, tìm GTLN của Q
\(ChoA=\frac{1}{2\left(1+\sqrt{x}+2\right)}+\frac{1}{2\left(1-\sqrt{x}+2\right)}\)
a, tìm x để a có nghĩa
b, rút gon A
c, tìm X nguyên để A nguyên
\(ChoA=\left(\frac{\sqrt{a}}{\sqrt{a-1}}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2}{a-1}\right)\)
a, Rút gọn A
b, tính A Khi a=3+\(2\sqrt{2}\)