tìm m để phương trình có nghiệm duy nhất : \(\frac{mx+5}{10}+\frac{x+m}{4}=\frac{m}{20}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho hệ phương trình
\(\hept{\frac{mx+y=m}{x+my=1}}\)
Tìm giá trị m để hệ phương trình có nghiệm duy nhất
Hệ phương trình <=> \(\hept{\begin{cases}y=m-mx\\x+m\left(m-mx\right)=1\end{cases}}\)
<=> \(\hept{\begin{cases}y=m-mx\\\left(1-m^2\right)x=1-m^2\left(2\right)\end{cases}}\)
Giải (2):
TH1: \(1-m^2=0\Leftrightarrow m=\pm1\)
khi đó: (2) trở thành: 0x = 0 có vô số nghiệm => TH1 loại
TH2: \(m\ne\pm1\)
khi đó: (1) <=> x = 1 thay vào tính y = m- m = 0
Vậy với mọi \(m\ne\pm1\) hệ luôn có nghiệm duy nhất: (x; y) = ( 1; 0)
Bài 4:
a) Tìm m để phương trình sau có nghiệm duy nhất: 2x - mx + 2m - 1 = 0.
b) Tìm m để phương trình sau có vô số nghiệm: mx + 4 = 2x + m2.
c) Tìm m để phương trình sau có nghiệm duy nhất dương: (m2 - 4)x + m - 2 = 0
à bài này a nhớ (hay mất điểm ở bài này) ;v
xinloi cậu tớ muốn giúp lắm mà tớ ngu toán:)
a)Ta có \(2x-mx+2m-1=0\\ =>x\left(2-m\right)+2m-1=0\)
Để pt có nghiệm duy nhất thì \(a\ne0=>2-m\ne0\\=>m\ne2\)
b)Ta có \(mx+4=2x+m^2\\ =>mx+4-2x+m^2=0\\ =>\left(m-2\right)x=m^2-4\)
Để pt vô số nghiệm thì \(\left\{{}\begin{matrix}m-2=0\\m^2-4=0\end{matrix}\right.=>\left\{{}\begin{matrix}m=2\\m=\pm2\end{matrix}\right.\)\(=>m=2\)
c)Để pt có nghiệm duy nhất thì \(m^2-4\ne0>m\ne\pm2\)
Chắc vậy :v
Bài 1: Tìm m để 2 phương trình có nghiệm tương đương vơi nhau
2x+3 = 0 và (2x +3)(mx-1) = 0
Bài 2: Giải và biện luận phương trình (m là hằng số)
\(\frac{m^2\left(\left(x+2\right)^2-\left(x-2\right)^2\right)}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)1)
Bài 3: Tìm các giá trị của hằng số a để phương trình vô nghiệm
\(\frac{a\left(3x-1\right)}{5}-\frac{6x-17}{4}+\frac{3x+2}{10}=0\)
Bài 4: Giải và biện luận phương trình (m là hằng số)
a) \(\frac{mx+5}{10}+\frac{x+m}{4}=\frac{m}{20}\)
b) \(\frac{x-4m}{m+1}+\frac{x-4}{m-1}=\frac{x-4m-3}{m^2-1}\)
HELP!!!!!!!!!!!!!!!!!!! >^<
Cho hệ phương trình
\(\hept{\begin{cases}x=\frac{m+1}{3}y-1\\-mx=y-1\end{cases}}\)
Tìm m để hệ phương trình trên có nghiệm duy nhất
Cho phương trình ẩn x
\(\frac{x+2m}{x-5}-1=\frac{x+5}{2m-x}+1\)( m là tham số )
Tìm m để phương trình có nghiệm duy nhất
ĐKXĐ : \(x\ne5;2m\)
\(\frac{x+2m}{x-5}-1=\frac{x+5}{2m-x}+1\)
\(\Leftrightarrow\frac{x+2m-x+5}{x-5}=\frac{x+5+2m-x}{2m-x}\)
\(\Leftrightarrow\frac{2m+5}{x-5}=\frac{5+2m}{2m-x}\Leftrightarrow\frac{\left(2m+5\right)\left(2m-x\right)}{\left(x-5\right)\left(2m-x\right)}=\frac{\left(5+2m\right)\left(x-5\right)}{\left(x-5\right)\left(2m-x\right)}\)
\(\Leftrightarrow4m^2-2mx+10m-5x=5x-25+2mx-10m\)
\(\Leftrightarrow4m^2-4mx+20m-10x+25=0\)
tìm m để phương trình có 1 nghiệm duy nhất
\(\frac{\left(m+1\right)\left(m-3\right)}{mx-6}=0\)
Mọi người giúp em với, em xin cảm ơn rất nhiều ạ.
1, Cho phương trình sau :\(2m\left(x-3\right)+1=x-5\)
Tìm m để phương trình có 1 nghiệm duy nhất.
2, Tìm m để phương trình sau có nghiệm:
\(\frac{3}{x+m}-\frac{1}{x-2}=\frac{2}{x+2m}\)
Cho phương trình \(\frac{x-m}{x+4}\)+ \(\frac{x-4}{x+m}\)= 2 (1)
a) Tìm m để phương trình có nghiệm bằng 4
b) Tìm m để phương trình (1) có nghiệm duy nhất
giúp mình với mng ơi
ĐKXĐ : \(\hept{\begin{cases}x\ne-4\\x\ne-m\end{cases}}\)
a) Để pt có nghiệm x = 4 thì \(\frac{4-m}{8}=2\)=> 4 - m = 16 <=> m = -12 ( tm )
Vậy với m = -12 thì pt có nghiệm x = 4
b) (1) <=> \(\frac{x^2-m^2}{\left(x+4\right)\left(x+m\right)}+\frac{x^2-16}{\left(x+4\right)\left(x+m\right)}=\frac{2\left(x+4\right)\left(x+m\right)}{\left(x+4\right)\left(x+m\right)}\)
=> 2x2 - m2 - 16 = 2x2 + ( 2m + 8 )x + 8m
<=> \(x=\frac{\left(m+4\right)^2}{2\left(m+4\right)}=\frac{m+4}{2}\)
Vậy pt luôn có nghiệm duy nhất ∀ x ≠ -4 và x ≠ -m
Tìm tất cả các giá trị của m để phương trình: \(\frac{\left(x+2\right)\left(mx+3\right)}{x-1}=0\) có nghiệm duy nhất
ta có \(\frac{\left(x+2\right)\left(mx+3\right)}{x-1}=0\Leftrightarrow\hept{\begin{cases}\left(x+2\right)\left(mx+3\right)=0_{ }\left(1\right)\\x-1\ne0\end{cases}}\)
Phương trình có nghiệm duy nhất khi (1) có nghiệm kép hoặc (1) có 2 nghiệm phân biệt trong đó một nghiệm là x=1
th1: (1) có nghiệm kép
\(\Rightarrow m=\frac{3}{2}\)
th2: (1) có 1 nghiệm x=1
\(\Rightarrow m=-3\)