\(P=\frac{2\sqrt{x}+1}{\sqrt{x}+3}\)Tìm x để P\(\in Z\)
1/ Cho biểu thức \(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{3\sqrt{x}-3}{x-5\sqrt{x}+6}\)
a)Tìm các giá trị của x để A<-1
b) Tìm các giá trị của \(x\in Z\) sao cho \(2A\in Z\)
2/ Cho \(A=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x-\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)tìm các giá trị của x để A>-6
Q = \(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)với đk x \(\ge0,x\ne9,x\ne4\)
1. rút gọn Q
2. tìm x để Q < 1
3. tìm x \(\in\)Z để Q\(\in\)Z
Cho biểu thức : \(A=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)
a, Rút gọn A
b, Tìm x để A < 1
c, Tìm \(x\in Z\) để \(A\in Z\)
\(ĐKXĐ:\)
\(\hept{\begin{cases}x-9\ne0\\\sqrt{x}-2\ne0\\\sqrt{x}+3\ne0;x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne9\\x\ne4\\x\ge0\end{cases}}\)
Vậy...................................................
\(A=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)
\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}-\sqrt{x}-3}{\left(\sqrt{x}+3\right)}:\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{-3}{\sqrt{x}+3}:\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{x-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{-3}{\sqrt{x}+3}:\frac{9-x+x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-3}{\sqrt{x}+3}:\frac{-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-3}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4-x}\)
\(=\frac{3\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
\(=\frac{3}{\left(2+\sqrt{x}\right)}\)
Đế A<1 \(\Rightarrow\frac{3}{2+\sqrt{x}}< 1\)
\(\Leftrightarrow\frac{3}{2+\sqrt{x}}-1< 0\)
\(\Leftrightarrow\frac{3-2-\sqrt{x}}{2+\sqrt{x}}< 0\)
\(\Leftrightarrow\frac{1-\sqrt{x}}{2+\sqrt{x}}< 0\)
Vì \(2+\sqrt{x}>0\forall x\in R\)
\(\Rightarrow1-\sqrt{x}< 0\)
\(\Leftrightarrow\sqrt{x}>1\Leftrightarrow x>1\)
Kết hợp ĐKXĐ \(\Rightarrow\hept{\begin{cases}x>1\\x\ne4\\x\ne9\end{cases}}\)
\(Q=\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}\)
a. Rút gọn Q.
b. Tìm x để Q >\(\frac{1}{2}\)
c. Tìm x \(\in\)Z để Q \(\in\)Z
Cho C = \(\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}.\)
a) rút gọn C
b) tìm x\(\in\)Z để C \(\in\)Z
c) tìm x để C > \(\frac{1}{2}\)
Cho biểu thức \(P=\frac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}-2}{\sqrt{x}}\left(\frac{1}{1-\sqrt{x}}-1\right)ĐKXĐ:x>0;x\ne1\)
a, Rút gọn P
b, Tìm x \(\in Z\) để \(P\in Z\)
c, Tìm x biết \(P=\sqrt{x}\)
Bài 1 :
\(P=\frac{3.\left(x+\sqrt{x}-3\right)}{x+\sqrt{x}-2}+\frac{\sqrt{x}+3}{\sqrt{x}+2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
a. Rút gon P
b. Tìm x để \(P=\frac{7}{2}\)
c. Tìm \(x\in Z\)để \(P\in Z\)
d. Tính P tại \(x=13-4\sqrt{10}\)
a) \(P=\frac{3\left(x+\sqrt{x}-3\right)}{x+\sqrt{x}-2}+\frac{\sqrt{x}+3}{\sqrt{x}+2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\) \(\left(x\ge0;x\ne1\right)\)
\(P=\frac{3x+3\sqrt{x}-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3x+3\sqrt{x}-9+x+2\sqrt{x}-3-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3x+5\sqrt{x}-8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3\sqrt{x}+8}{\sqrt{x}+2}\)
b) \(P=\frac{7}{2}\)
\(\Leftrightarrow\frac{3\sqrt{x}+8}{\sqrt{x}+2}=\frac{7}{2}\)
\(\Rightarrow6\sqrt{x}+16=7\sqrt{x}+14\)
\(\Leftrightarrow\sqrt{x}=2\Rightarrow x=4\)
c) \(P=\frac{3\sqrt{x}+8}{\sqrt{x}+2}=\frac{\left(3\sqrt{x}+6\right)+2}{\sqrt{x}+2}=\frac{3\left(\sqrt{x}+2\right)+2}{\sqrt{x}+2}\)
\(=3+\frac{2}{\sqrt{x}+2}\)
Để P nguyên
=> \(\frac{2}{\sqrt{x}+2}\inℤ\Rightarrow\sqrt{x}+2\inƯ\left(2\right)\)
Mà \(\sqrt{x}+2\ge2\left(\forall x\right)\)
\(\Rightarrow\sqrt{x}+2=2\Rightarrow x=0\)
Cho M=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\) \(\left(x\ge0;x\ne4;x\ne9\right)\)
a, Rút gọn M
b, Tính M khi x=\(11-6\sqrt{2}\)
c, Tìm x để M<1
d, Tìm \(x\in Z\) để M\(\in Z\)
M = \(\frac{2\sqrt{x}-9x}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\left(\sqrt{x}+3\right)\left(3-\sqrt{x}\right)+\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)}\)
=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{9-x+2x-3\sqrt{x}}{x-5\sqrt{x}+6}\)
=\(\frac{x-\sqrt{x}}{x-5\sqrt{x}+6}\)
cho B=\(\left(\frac{\sqrt{x}}{x-4}+\frac{2}{2-\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right):\sqrt{x}-2+\frac{10-x}{\sqrt{x+2}}\)
a/ tìm điều kiện xác định của B
b/ rút gọn B
c/ tìm x \(\in\)Z để B \(\in\)Z
d/ tìm x để B=3
e/ Tính B khi x=?
\(B=\left(\frac{x+\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}+\frac{1}{x+1}\right):\frac{\sqrt{x}-1}{x+1}\)
a, Rút gọn A
b, Tính B với x=\(\frac{2+\sqrt{3}}{2}\)
c, Tìm \(x\in Z\) để \(B\in Z\)
d, Tìm x để \(B\sqrt{x}=5\)
e, Tìm x để \(B\sqrt{x}\) đạt GTNN