Những câu hỏi liên quan
BA
Xem chi tiết
H24
Xem chi tiết
HP
Xem chi tiết
LH
Xem chi tiết
NQ
Xem chi tiết
LP
28 tháng 6 2023 lúc 7:25

a) \(x^2-3xy+3y^2=3y\)

Rõ ràng \(x⋮y\) nên đặt \(x=ky\left(k\inℤ\right)\). Pt trở thành:

\(k^2y^2-3ky^2+3y^2=3y\)

\(\Leftrightarrow\left[{}\begin{matrix}y=0\\k^2y-3ky+3y=3\end{matrix}\right.\).

Khi \(y=0\) \(\Rightarrow x=0\).

Khi \(k^2y-3ky+3y=3\)

\(\Leftrightarrow y\left(k^2-3k+3\right)=3\)

Ta lập bảng giá trị:

\(y\) 1 3 -1 -3
\(k^2-3k+3\) 3 1 -3 -1
\(k\) 0 hoặc 3 1 hoặc 2 vô nghiệm vô nghiệm
\(x\) 0 (loại) hoặc 3 (nhận) 3 (nhận) hoặc 6 (nhận)    

Vậy pt đã cho có các nghiệm \(\left(0;0\right);\left(3;1\right);\left(3;3\right);\left(6;3\right)\)

b) \(x^2-2xy+5y^2=y+1\)

\(\Leftrightarrow x^2-2yx+5y^2-y-1=0\)

\(\Delta'=\left(-y\right)^2-\left(5y^2-y-1\right)\) \(=-4y^2+y+1\)

Để pt đã cho có nghiệm thì \(-4y^2+y+1\ge0\), giải bpt thu được \(\dfrac{1-\sqrt{17}}{8}\le y\le\dfrac{1+\sqrt{17}}{8}\). Mà lại có \(-1< \dfrac{1-\sqrt{17}}{8}< 0< \dfrac{1+\sqrt{17}}{8}< 1\) nên suy ra \(y=0\). Từ đó tìm được \(x=\pm1\). Vậy pt đã cho có các nghiệm \(\left(1;0\right);\left(-1;0\right)\)

Bình luận (0)
OP
Xem chi tiết
SS
22 tháng 5 2017 lúc 22:28

tách như này nè

\(x^2+2y^2+3xy+3x+5y+2=17\)

Bình luận (0)
NL
5 tháng 2 2018 lúc 19:48

bn tham khảo câu này nha https://h.vn/hoi-dap/question/79049.html

chúc bn học tốt.tk mk nha

Bình luận (0)
TT
13 tháng 3 2018 lúc 20:53

cấp 3 rôi

phương trình thì cấp 3 mới làm được chứ mấy bọn con nít chơi cái này ko làm được đâu

Bình luận (0)
DQ
Xem chi tiết
KN
20 tháng 8 2016 lúc 21:34

 x2 + 2y2 + 3xy + 3x + 5y = 15

         Û (x +y +z )(x + 2y +1)

đúng không???

Bình luận (0)
LP
20 tháng 8 2016 lúc 21:38

GPT thì cần tìm x,ynữa

Bình luận (0)
ND
20 tháng 8 2016 lúc 22:25

Z ở đâu ra vậy

Bình luận (0)
DC
Xem chi tiết
NH
Xem chi tiết
TL
18 tháng 8 2020 lúc 20:10

Phương trình \(5x+25=-3xy+8y^2\Leftrightarrow x=\frac{8y^2-25}{3y+5}\)

Bời vì x,y là số nguyên \(\Rightarrow8y^2-25⋮3y+5\)

\(\Rightarrow3\left(8y^2-25\right)⋮\left(3y+5\right)\Rightarrow\left(24y^2-75\right)⋮\left(3y+5\right)\left(1\right)\)

Mặt khác ta có \(8y\left(3y+5\right)⋮\left(3y+5\right)\Rightarrow\left(24y^2+40y\right)⋮\left(3y+5\right)\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left[\left(24y^2+40y\right)-\left(24y^2-75\right)\right]⋮\left(3y+5\right)\)

Do đó \(\left(40y+75\right)⋮\left(3y+5\right)\Rightarrow3\left(40y+75\right)⋮\left(3y+5\right)\)

\(\Rightarrow\left(120y+225\right)⋮\left(3y+5\right)\)mà \(40\left(3y+5\right)⋮\left(3y+5\right)\)

\(\Rightarrow\left(120y+200\right)⋮\left(3y+5\right)\Rightarrow\left(120y+225\right)-\left(120y+200\right)=25⋮\left(3y+5\right)\)

\(\Rightarrow3y+5\inƯ\left(25\right)=\left\{\pm1;\pm5;\pm25\right\}\)

\(\Rightarrow y\in\left\{-2;0;-10\right\}\)

Với y=-2 => x=-7 ta có cặp (-7;-2) thỏa mãn

Với y=0 => x=-5 ta có cặp (-5;0) thỏa mãn

Với y=-10 => x=-3 ta có cặp (-3;-10) thỏa mãn

Phương trình có các cặp nghiệm nguyên \(\left(x;y\right)=\left\{\left(-7;-2\right);\left(-5;0\right);\left(-3;-10\right)\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
TT
20 tháng 8 2020 lúc 7:40
E7euueueru3
Bình luận (0)
 Khách vãng lai đã xóa
CT
22 tháng 8 2020 lúc 9:10

đây ko phải câu hỏi lớp 1

Bình luận (0)
 Khách vãng lai đã xóa