Cho tam giác ABC vuông tại A đường cao AH biết AB= 21cm AC=28cm BC=35cm Tính AH BH CH
Cho tam giác ABC có AB=21cm, AC=28cm, BC=35cm. Vẽ đường cao AH.
a/ Chứng minh tam giác ABC vuông. Tính chiều cao AH
b/ Chứng minh tam giác HBA đồng dạng với tam giác HAC
c/ Đường phân giác của góc A cắt BC tại M. Tính độ dài đoạn thẳng MB, MC
a) Ta có: AB^2 + AC^2 = 21^2 + 28^2 = 35^2 = BC^2
Vậy Tam giác ABC vuông tại A (đl Pytago đảo)
b) Ta có: Góc B + góc C = 90 độ (cmt câu a)
Góc HAC + góc C = 90 độ (Tam giác HAC vuông tại H)
=> Góc B = góc HAC
Mà Góc AHB= Góc AHC = 90 độ (Đường cao AH)
Vậy Tam giác HBA ~ tam giác HAC (góc - góc)
c)
Theo tính chất đường phân giác trong tam giác:
MB/ AB = MC / AC
<=> MB. AC = MC . AB
<=> MB . AC = (35- MB) . AB
<=> 35AB= MB.(AB+AC)
<=> MB = 35AB/(AB+AC) = 35.21/(21+28) = 15 cm
=> MC= 35 - 15 = 20 cm
Vậy MB = 15 cm, MC 20 cm
(Bạn tự vẽ hình và ghi giả thuyết kết luận nhé!)
Cho tam giác ABC; AB=21cm,AC=35cm,BC=28cm.
a. Chứng minh tam giac ABC vuông. Tính số đo góc A và góc C
b. Tính BH,AH,CH
Ai giải giúp mình với. Mình cần gấp lắm
Thanks mina-san nhìu!!!
a/ Ta có: 212 + 282 = 352
Vậy tam giác vuông tại B
sinA = \(\frac{28}{35}=\frac{4}{5}\)=> A
=> C = 180 - 90 - A
b/ H là gì thế
Cho ΔABC vuông tại A, đường cao AH và đường phân giác AD (H và D thuộc BC). Biết AB = 21cm, AC = 28cm.
a) Tính diện tích tam giác ABC và chứng minh AH . BC = AB . AC
\(S_{ABC}=\dfrac{AB.AC}{2}=\dfrac{21.28}{2}=294\left(cm^2\right)\)
Ta có:\(S_{ABC}=\dfrac{AB.AC}{2}\) mà ta lại có: \(S_{ABC}=\dfrac{AH.BC}{2}\)
\(\Rightarrow\dfrac{AB.AC}{2}=\dfrac{AH.BC}{2}\Rightarrow AB.AC=AH.BC\left(đpcm\right)\)
Cho ΔABC vuông tại A, đường cao AH và đường phân giác AD (H và D thuộc BC). Biết AB = 21cm, AC = 28cm.
a) Tính diện tích tam giác ABC và chứng minh AH . BC = AB . AC
b) Tính độ dài BC, DB và DC.
Trong ΔABC, ta có: AD là đường phân giác của (BAC)
Suy ra: (tính chất đường phân giác)
Mà AB = 21 (cm); AC = 28 (cm)
Nên \(\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{21}{28}=\dfrac{3}{4}\)
Suy ra:
(tính chất tỉ lệ thức)Suy ra:
Cho Tam Giác ABC có AB=21cm , AC =28cm , BC=35cm ., vẽ đường cao AH
a) Chứng minh tam giác ABC vuông
b) Chứng minh tam giác HBA đồng dạng với tam giác HAC
c) Chứng minh AC2=BH.BC
d) Đường phân giác góc AM . Tính BM và CM
a)Ta có:`AB^2+AC^2=21^2+28^2=1225`
Mà `BC^2=1225`
Áp udnjg định lý ppytago đảo vào tam giác ABC có:`AB^2+AC^2=BC^2=1225`
`=>` tam giác ABC vuông
b)Vì BAC vuông tại A
`=>hat{BAC}=90^o`
`=>hat{HAB}=hat{HCA}=90^o-hat{HAC}`
Xét tam giác HBA và tam giác HAC có"
`hat{HAB}=hat{HCA}`(CMT)
`hat{BHA}=hat{HAC}=90^o`
`=>` tam giác HBA đồng dạng với tam giác HAC(gg)
c)Xét tam giác ACH và tam giác BAC ta có:
`hat{AHC}=hat{BAC}=90^o`
`hat{ACB}` chung
`=>DeltaACH~DeltaBAC(gg)`
`=>(AC)/(BH)=(BC)/(AC)`
`=>AC^2=BH.BC`.
d)Đường phân góc gì nhỉ?
Cho ΔABC vuông tại A, đường cao AH và đường phân giác AD (H và D thuộc BC). Biết AB = 21cm, AC = 28cm.
a) Tính diện tích tam giác ABC và chứng minh AH . BC = AB . AC
b) Tính độ dài BC, DB và DC.
c) Đường phân giác BK của ABC cắt AD tại I (K thuộc AC), tính tỉ số BI/IK . Gọi G là trọng tâm ΔABC, chứng minh IG //AC.
a: ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot21\cdot28=294\left(cm^2\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\)
mà \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\)
nên \(AH\cdot BC=AB\cdot AC\)
b: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=21^2+28^2=1225\)
=>\(BC=\sqrt{1225}=35\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)
=>\(\dfrac{DB}{15}=\dfrac{DC}{20}\)
=>\(\dfrac{DB}{3}=\dfrac{DC}{4}\)
mà DB+DC=BC=35cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{35}{7}=5\)
=>\(DB=5\cdot3=15\left(cm\right);DC=4\cdot5=20\left(cm\right)\)
Cho tam giác ABC có AB=21cm, AC=28cm, BC=35cm và đường cao AH.
a)Chứng minh tam giác ABC vuông
B)Chứng minh tam giác ABH đồng dạng với tam giác CBA và tính AH,BH
c)Chứng minh: AH^2=BH.CH
d)Gọi AD là đường phản giác của tam giác ABC. tính BD, CD và diện tích tam giác AHD.
e)Đường thẳng qua B vuong góc với AD cắt AH, AC lần lượt tại I và K. Tính IB/IK.
Giúp mình câu d nha mọi người
d, tim AH=16,8cm do tam giác ABH dồng dạng với tam giác CBA các cạnh tuong ứng tỉ lệ
tinh CD tính chất dg pg \(\frac{CD}{DB}=\frac{AC}{AB}\)
tính chat day ti so bang nhau
\(\frac{CD}{DB+CD}=\frac{AC}{AB+AC}\)
thế số vao rồi tính suy ra CD=20, BD=15
pytago trong tam giác HAC tińh CH=22,4
suy ra DH=2,4
Diện tích tam giác AHD=1/2 *AH*DH=20,16
Ban có thể tính laị so lieu
1. Cho tam giác ABC vuông tại A(AB<AC) có đường cao AH. Biết BC = 25cm, AH = 12cm. Tính AB, AC, BH, CH
2. Cho tam giác ABC vuồng tại A, đường cao AH. Biết AB = 15cm, HC = 16cm. Tính AC, BC, AH, BH
1, Cho tam ABC vuông tại A, đường cao AH, đường phân giác AD. Tính HD biết AD=21cm, AC=28cm.
2, Cho tam ABC vuông tại A, đường cao AH, AH=33,6cm. Tính các giác vuông biết \(\frac{AB}{AC}\)=\(\frac{7}{24}\).