Những câu hỏi liên quan
PN
Xem chi tiết
EC
13 tháng 7 2021 lúc 10:30

Ta có: 

K = x2 + y2 - 6x + y + 10

K = (x2 - 6x + 9) + (y2 + y + 1/4) + 3/4

K = (x - 3)2 + (y + 1/2)2 + 3/4 \(\ge\)3/4 \(\forall\)x; y (vì (x - 3)2 \(\ge\)0 và (y + 1/2)2 \(\ge\)0)

Dấu "=" xảy ra<=> \(\hept{\begin{cases}x-3=0\\y+\frac{1}{2}=0\end{cases}}\) <=> \(\hept{\begin{cases}x=3\\y=-\frac{1}{2}\end{cases}}\)

Vậy MinK = 3/4 <=> x = 3 và y = -1/2

Bình luận (0)
 Khách vãng lai đã xóa
PN
Xem chi tiết
XO
13 tháng 7 2021 lúc 15:55

Ta có C = x2 - 4x + y2 - y + 5 

\(\left(x^2-4x+4\right)+\left(y^2-y+\frac{1}{4}\right)+\frac{3}{4}\)

\(\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

=> Min C = 3/4

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2=0\\y-\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)

Vậy Min C = 3/4 <=> x = 2 ; y = 1/2 

Bình luận (0)
 Khách vãng lai đã xóa
LD
13 tháng 7 2021 lúc 16:07

C = ( x2 - 4x + 4 ) + ( y2 - y + 1/4 ) + 3/4

= ( x - 2 )2 + ( y - 1/2 )2 + 3/4 ≥ 3/4 ∀ x.y 

Dấu "=" xảy ra <=> x = 2 ; y = 1/2 . Vậy MinC = 3/4

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
SG
24 tháng 9 2023 lúc 10:22

a, Vì \(\left(x-2\right)^2\ge0\) nên \(A=\left(x-2\right)^2+24\ge24\)

Dấu '=' xảy ra khi và chỉ khi: \(\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy GTNN của A là 24 khi x=2.

b,Vì \(-x^2\le0\) nên \(B=-x^2+\dfrac{13}{5}\le\dfrac{13}{5}\)

Dấu '=' xảy ra khi và chỉ khi: \(-x^2=0\Leftrightarrow x=0\)

Vậy GTLN của B là \(\dfrac{13}{5}\) khi x=0

Bình luận (0)
H24
23 tháng 9 2023 lúc 23:38

Ai trả lời nhanh và đúng mik give tick xanh nhé.

 

Bình luận (0)
PN
Xem chi tiết
HM
13 tháng 7 2021 lúc 10:34

123

456

789

101112

ht

Bình luận (0)
 Khách vãng lai đã xóa
PN
13 tháng 7 2021 lúc 11:02

mọi người ơi giúp mình trả lồi câu hỏi này vớiiiiiiiiiiii

Bình luận (0)
 Khách vãng lai đã xóa
PN
13 tháng 7 2021 lúc 14:43

Trả lời câu hỏi giùm tui với

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
H24
24 tháng 10 2023 lúc 20:10

\((9-x)^2-7\)

Ta thấy: \(\left(9-x\right)^2\ge0\forall x\)

\(\Rightarrow\left(9-x\right)^2-7\ge-7\forall x\)

Dấu \("="\) xảy ra khi: \(9-x=0\Leftrightarrow x=9\)

Vậy GTNN của biểu thức là -7 khi x = 9.

Bình luận (0)
MN
Xem chi tiết
NY
Xem chi tiết
NY
Xem chi tiết
HS
12 tháng 3 2016 lúc 21:59

MỚI HỌC LỚP 5, KO CÓ HIỂU

Bình luận (0)
KD
12 tháng 3 2016 lúc 22:00

a) ?A = 5x2 - 1

  Vì x2 \(\ge\) 0 nên 5x2 \(\ge\) 0.

 Dấu ''='' xảy ra khi và chỉ khi x = 0.

 Khi đó minA = -1

Vậy minA = -1 \(\Leftrightarrow\) x = 0

Bình luận (0)
KD
12 tháng 3 2016 lúc 22:01

b) và c) lập luận tương tự ta được minB = -2 và minC = -10.

Bình luận (0)
PN
Xem chi tiết
NT
27 tháng 7 2021 lúc 15:29

1, \(4x^2-4x+3=\left(2x-1\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 1/2

Vậy GTNN biểu thức trên là 2 khi x = 1/2 

2, \(-x^2+10x-30=-\left(x^2-10x+25+5\right)=-\left(x-5\right)^2-5\le-5\)

Dấu ''='' xảy ra khi x = 5 

Vậy GTLN biểu thức trên là -5 khi x = 5

3, \(x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu ''='' xayr ra khi x = 1/2 

Vậy GTNN biểu thức là 3/4 khi x = 1/2 

4, \(25x^2+10x=25x^2+10x+1-1=\left(5x+1\right)^2-1\ge-1\)

Dấu ''='' xảy ra khi x = -1/5

Vậy GTNN biểu thức trên là -1 khi x = -1/5

6, \(-x^2+8x+5=-\left(x^2-8x-5\right)=-\left(x^2-8x+16-21\right)\)

\(=-\left(x-4\right)^2+21\le21\)

Dấu ''='' xảy ra khi x = 4

Vậy GTLN biểu thức trên là 21 khi x = 4

Bình luận (0)
 Khách vãng lai đã xóa
QA
27 tháng 7 2021 lúc 15:38

Trả lời:

1, \(4x^2-4x+3=4x^2-4x+1+2=\left(2x-1\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra khi 2x - 1 = 0 <=> x = 1/2

Vậy GTNN của bt = 2 khi x = 1/2

2, \(-x^2+10x-30=-\left(x^2-10x+30\right)=-\left(x^2-10x+25+5\right)=-\left[\left(x-5\right)^2+5\right]\)

\(=-\left(x-5\right)^2-5\le-5\forall x\)

Dấu "=" xảy ra khi x - 5 = 0 <=> x = 5

Vậy GTLN của bt = - 5 khi x = 5

3, \(25x^2+10x=25x^2+10x+1-1=\left(5x+1\right)^2-1\ge-1\forall x\)

Dấu "=" xảy ra khi 5x + 1 = 0 <=> x = - 1/5 

Vậy GTNN của bt = - 1 khi x = - 1/5

4, \(x^2-x+1=x^2-2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu "=" xảy ra khi x - 1/2 = 0 <=> x = 1/2

Vậy GTNN của bt = 3/4 khi x = 1/2

5, \(8x-x^2+5=-\left(x^2-8x-5\right)=-\left(x^2-8x+16-21\right)=-\left[\left(x-4\right)^2-21\right]\)

\(=-\left(x-4\right)^2+21\le21\forall x\)

Dấu "=" xảy ra khi x - 4 = 0 <=> x = 4

Vậy GTLN của bt = 21 khi x = 4

Bình luận (0)
 Khách vãng lai đã xóa