Những câu hỏi liên quan
H24
Xem chi tiết
HA
Xem chi tiết
CD
16 tháng 6 2019 lúc 14:35

https://diendantoanhoc.net/topic/182493-%C4%91%E1%BB%81-thi-tuy%E1%BB%83n-sinh-v%C3%A0o-l%E1%BB%9Bp-10-%C4%91hsp-h%C3%A0-n%E1%BB%99i-n%C4%83m-2018-v%C3%B2ng-2/

Bình luận (0)
CD
16 tháng 6 2019 lúc 14:37

bài này năm trrong đề thi tuyển sinh vào lớp 10 ĐHSP Hà Nội Năm 2018 (vòng 2) bn có thể tìm đáp án trên mạng để tham khảo

Bình luận (0)
TN
16 tháng 6 2019 lúc 17:58

Sử dụng bất đẳng thức AM-GN, ta có:

\(x^2y^2+1\ge2xy,\) \(y^2z^2+1\ge2yz,\) \(z^2x^2+1\ge2zx\)

Cộng các bất đẳng thức trên lại theo vế, sau đó cộng hai vế của bất đẳng thức thu được với \(x^2+y^2+z^2\), ta được:

\(\left(x+y+z\right)^2\le x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2+3=9\)

Từ đó suy ra: \(Q\le3\)

Mặt khác, dễ thấy dấu bất đẳng thức xảy ra khi \(x=y=z=1\)  nên ta có kết luận \(Max_Q=3\)

Ta sẽ chứng minh \(Q\ge\sqrt{6}\) với dấu đẳng thức xảy ra, chẳng hạn \(x=\sqrt{6},\) \(y=z=0.\) Sử dụng bất đẳng thức AM-GN, ta có:

\(2xy+x^2y^2\le x^2+y^2+x^2y^2\le x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2=6\)

Từ đó suy ra: \(xy\le\sqrt{7}-1< 2\)

Chứng minh tương tự, ta cũng có: 

\(yz< 2,\) \(zx< 2.\)

Do đó, ta có: 

\(Q^2=x^2+y^2+z^2+2xy+2yz+2zx\ge x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2=6\)

Hay: \(Q\ge\sqrt{6}\)

\(\Rightarrow Min_Q=\sqrt{6}\)

Bình luận (0)
HN
Xem chi tiết
QQ
5 tháng 12 2022 lúc 20:44

Ta thấy [TEX]y \geq 1[/TEX].
+ Nếu [TEX]y=1[/TEX] thì ta có [TEX]3^x=2^z-1[/TEX].
Xét tính chia hết cho 3 dễ thấy [TEX]z \vdots 2[/TEX]. Đặt [TEX]z=2k (k \in \mathbb{N}^*)[/TEX]
Ta có: [TEX]3^x=2^{2k}-1=(2^k-1)(2^k+1)[/TEX]
Đặt [TEX]2^k-1=3^m, 2^k+1=3^n (m,n \in \mathbb{N}^*; m+n=z) [/TEX]
Ta có: [TEX]3^n-3^m=2 \Rightarrow n=1, m=1 \Rightarrow z=2[/TEX]
[TEX]\Rightarrow z=1[/TEX]. Từ đó ta có bộ [TEX](x,y,z)=(1,1,2)[/TEX]
+ Nếu [TEX]y \geq 2[/TEX] thì ta có [TEX]2^z-2^y=3^x-1 > 0 \Rightarrow z >y[/TEX]
Lại có: [TEX]z>y \geq 2 \Rightarrow 3^x-1 \vdots 4 \Rightarrow x \vdots 2[/TEX]
Khi đó nếu [TEX]y \geq 4[/TEX] thì [TEX]3^x-1 \vdots 16 \Rightarrow x \vdots 4[/TEX]
[TEX]x=4q\Rightarrow 2^z-2^y=81^q-1\equiv 0(\text{mod 5})\Rightarrow 2^z-2^y\vdots 5\Rightarrow 2^y(2^{z-y}-1)\vdots 5[/TEX]
Từ đó [TEX]2^{z-y}-1 \vdots 5 \Rightarrow z-y=4k+2 \Rightarrow z-y \vdots 2 \Rightarrow 2^{z-y}-1 \vdots 3[/TEX]
[TEX]\Rightarrow 3^x-1 \vdots 3[/TEX](mâu thuẫn)
Suy ra [TEX]2 \leq y \leq 3[/TEX].
Nếu [TEX]y=2[/TEX] thì [TEX]3^x+3 =2^z \vdots 3[/TEX](mâu thuẫn)
Nếu [TEX]y=3[/TEX] thì [TEX]3^x+7=2^z[/TEX]. Xét đồng dư với 3 nên [TEX]z \vdots 2[/TEX].
Đặt [TEX]x=2m,z=2n \Rightarrow 2^{2n}-3^{2m}=7 \Rightarrow (2^n-3^m)(2^n+3^m)=7[/TEX]
[TEX]\Rightarrow 2^n-3^m=1,2^n+3^m=7 \Rightarrow n=2,m=1 \Rightarrow x=2,z=4[/TEX]
Vậy [TEX](x,y,z)=(1,1,2)[/TEX] hoặc [TEX](x,y,z)=(2,3,4)[/TEX]

Bình luận (0)
H24
Xem chi tiết
EC
4 tháng 9 2021 lúc 10:40

Ta có: \(\dfrac{x^3}{y+2z}+\dfrac{y^3}{z+2x}+\dfrac{z^3}{x+2y}=\dfrac{x^4}{xy+2zx}+\dfrac{y^4}{yz+2xy}+\dfrac{z^4}{zx+2yz}\)

\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{xy+2zx+yz+2xy+zx+2yz}=\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\)

Mà ta lại có: \(xy+yz+zx\le x^2+y^2+z^2\)

 \(\Rightarrow\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1^2}{3.1}=\dfrac{1}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{1}{\sqrt{3}}\)

Bình luận (0)
HQ
Xem chi tiết
TN
2 tháng 7 2016 lúc 16:34

\(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}\)\(+4+x-3-6\sqrt{x-3}+9=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)

Bình luận (0)
NT
19 tháng 2 2022 lúc 7:51

@@@

Khó quá em mới lớp 5

HT

Bình luận (0)
 Khách vãng lai đã xóa
DL
Xem chi tiết
NV
Xem chi tiết
LD
Xem chi tiết
HN
3 tháng 1 2017 lúc 11:53

Bài 2. a/ \(1\le a,b,c\le3\)  \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\)\(\left(c-1\right).\left(c-3\right)\le0\)

Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)

\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)

Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1

b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\) 

Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)

Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay

\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)

Bình luận (0)
TT
2 tháng 1 2017 lúc 21:32

chẵng biết

Bình luận (0)
LD
2 tháng 1 2017 lúc 21:41

khó lắm ai làm được tui chuyển 10k qa tài khoản ngân hàng =) nói là làm

Bình luận (0)
TN
Xem chi tiết
PQ
6 tháng 11 2018 lúc 21:52

hùi nãy mem nào k sai cho t T_T t buồn 

\(VT\ge6\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-2\left(xy+yz+zx\right)+2.\frac{9}{4\left(x+y+z\right)}\)

\(=6\left(x+y+z\right)^2-2.\frac{\left(x+y+z\right)^2}{3}+\frac{9}{2\left(x+y+z\right)}=6.\left(\frac{3}{4}\right)^2-2.\frac{\left(\frac{3}{4}\right)^2}{3}+\frac{9}{2.\frac{3}{4}}\)

\(=\frac{27}{8}-\frac{3}{8}+6=9\)

\(\Rightarrow\)\(VT\ge9\) ( đpcm ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{4}\)

Chúc bạn học tốt ~ 

Bình luận (0)