Tính giá trị biểu thức sau: A=\(\dfrac{2x^3+3x-1}{3x-2}\)với | x - 1 | =\(\dfrac{2}{3}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho biểu thức: P =(\(\dfrac{x+2}{3x}+\dfrac{2}{x+1}-3\)) : \(\dfrac{2-4x}{x+1}-\dfrac{3x-x^2+1}{3x}\)
a) Tìm điều kiện xác định của P
b) Rút gọn biểu thức P
c) Tính giá trị của M với \(\left|2x-5\right|=5\)
d) Với giá trị nào của x thì P = \(\dfrac{-1}{2}\)
e) Tìm các giá trị của x để M \(\ge-1\)
f) Tìm các giá trị x nguyên để \(\dfrac{1}{M}\) nhận giá trị nguyên
Cho biểu thức A=(\(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\)):(x-2 + \(\dfrac{10-x^2}{x+2}\))
a)Rút gọn A
b)Tính giá trị x của A với giá trị của x thỏa mãn |2x-1|=3
c) Tìm x để (3-4x).A<3
d) Tìm giá trị nhỏ nhất của biểu thức B=(8-\(^{x^3}\)).A+x
a) Tìm x sao cho giá trị biểu thức \(\dfrac{3x-2}{4}\)không nhỏ hơn giá trị của biểu thức \(\dfrac{3x+3}{6}\)
b) Tìm x sao cho giá trị của biểu thức (x+1)2 nhỏ hơn giá trị của biểu thức (x-1)2.
c) Tìm x sao cho giá trị của biểu thức \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\) không lớn hơn giá trị của biểu thức \(\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)
a: Để \(\dfrac{3x-2}{4}\) không nhỏ hơn \(\dfrac{3x+3}{6}\) thì \(\dfrac{3x-2}{4}>=\dfrac{3x+3}{6}\)
=>\(\dfrac{6\left(3x-2\right)}{24}>=\dfrac{4\left(3x+3\right)}{24}\)
=>18x-12>=12x+12
=>6x>=24
=>x>=4
b: Để \(\left(x+1\right)^2\) nhỏ hơn \(\left(x-1\right)^2\) thì \(\left(x+1\right)^2< \left(x-1\right)^2\)
=>\(x^2+2x+1< x^2-2x+1\)
=>4x<0
=>x<0
c: Để \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\) không lớn hơn \(\dfrac{x^2}{7}-\dfrac{2x-3}{5}\) thì
\(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}< =\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)
=>\(\dfrac{2x-3+5x\left(x-2\right)}{35}< =\dfrac{5x^2-7\cdot\left(2x-3\right)}{35}\)
=>\(2x-3+5x^2-10x< =5x^2-14x+21\)
=>-8x-3<=-14x+21
=>6x<=24
=>x<=4
Cho tỉ lệ thức \(\dfrac{x}{y}=\dfrac{2}{3}\). Tính giá trị của các biểu thức sau:
\(A=\dfrac{x+5y}{3x-2y}-\dfrac{2x-3y}{4x+5y}\)
\(B=\dfrac{2x^2-xy+3y^2}{3x^2+2xy+y^2}\)
Lời giải:
$\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:
$x=2k; y=3k$
Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.
$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$
cho biểu thức : A = \(\dfrac{2x}{x-3}\) + \(\dfrac{2x^2+3x+1}{9-x^2}\) B = \(\dfrac{x-1}{x-3}\)
a)tính B khi x = 5
b)rút gọn biểu thức A
c)đặt P = A : B .tìm giá trị nguyễn của x dể P có giá trị là số nguyên
a: Thay x=5 vào B, ta được:
\(B=\dfrac{5-1}{5-3}=\dfrac{4}{2}=2\)
b: \(A=\dfrac{2x^2+6x-2x^2-3x-1}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x-1}{\left(x+3\right)\left(x-3\right)}\)
Bài 1: Tính giá trị các biểu thức sau tại: |x| = \(\dfrac {1}{3}\); |y| = 1
a) A= 2x2 - 3x + 5 b) B= 2x2 - 3xy + y2
Bài 2: Tính giá trị các biểu thức A sau biết x + y +1 = 0:
A= x (x + y) - y2 (x + y) + x2 - y2 + 2 (x + y) + 3
Bài 3: Cho x.y.z = 2 và x + y + z = 0. Tính giá trị biểu thức:
A= (x + y)(y + z)(z + x)
Bài 4: Tìm các giá trị của các biến để các biểu thức sau có giá trị bằng 0:
a) |2x - \(\dfrac {1}{3}\)| - \(\dfrac {1}{3}\) b) |2x - \(\dfrac {1}{3}
\)| - \(\dfrac {1}{3}\) c) |3x + 2\(\dfrac {1}{3}
\)| + |y + 2| = 0 d) (x - 2)2 + (2x - y + 1)2 = 0
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)
Bài 2:
\(x+y+1=0\Rightarrow x+y=-1\)
A = \(x\)(\(x+y\)) - y2.(\(x+y\)) + \(x^2\) - y2 + 2(\(x+y\)) + 3
Thay \(x\) + y = -1 vào biểu thức A ta có:
A = \(x\).( -1) - y2 .(-1) + \(x^2\) - y2 + 2(-1) + 3
A = -\(x\) + y2 + \(x^2\) - y2 - 2 + 3
A = \(x^2\) - \(x\) + 1
bài 3 cho hai biểu thức A=\(\dfrac{3}{3x+1}+\dfrac{2}{1-3x},B=\dfrac{x-5}{9x^2-1}\),với giá trị nào của x thì hai biểu thức A,B có cùng một giá trị?
Để A=B thì \(\dfrac{3}{3x+1}-\dfrac{2}{3x-1}=\dfrac{x-5}{\left(3x-1\right)\left(3x+1\right)}\)
=>9x-3-6x-3=x-5
=>3x-6=x-5
=>2x=1
=>x=1/2
hai biểu thức A,B có cùng một giá trị
\(=>A=B\\ đk:\left\{{}\begin{matrix}x\ne\dfrac{1}{3}\\x\ne-\dfrac{1}{3}\end{matrix}\right.\\ =>\dfrac{3}{3x+1}+\dfrac{2}{1-3x}=\dfrac{x-5}{9x^2-1}\\ =>\dfrac{3}{3x+1}+\dfrac{-2}{3x-1}=\dfrac{x-5}{\left(3x-1\right)\left(3x+1\right)}\\ =>\dfrac{3\left(3x-1\right)-2\left(3x+1\right)}{\left(3x-1\right)\left(3x+1\right)}=\dfrac{x-5}{\left(3x-1\right)\left(3x+1\right)}\\ =>9x-3-6x-2=x-5\\ =>3x-5=x-5\\ =>3x-x=-5+5\\ =>2x=0\\ =>x=0\left(t/m\right)\)
Tính giá trị của biểu thức \(B=\dfrac{4x^{2024}\left(x+1\right)-2x^{2023}+2x+1}{2x^2+3x}\) tại \(x=\sqrt{\dfrac{1}{2\sqrt{3}}-\dfrac{3}{2\sqrt{3}+2}}\)
\(x=\sqrt{\dfrac{2\sqrt{3}+2-6\sqrt{3}}{2\sqrt{3}\left(2\sqrt{3}+2\right)}}=\sqrt{\dfrac{2-4\sqrt{3}}{2\sqrt{3}\left(2\sqrt{3}+2\right)}}\) ko tồn tại vì 2-4căn 3<0
Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của các biểu thức sau:
a) S= \(\dfrac{3}{2x^2+2x+3}\)
b) T= \(\dfrac{5}{3x^2+4x+15}\)
c) V= \(\dfrac{1}{-x^2+2x-2}\)
d) X= \(\dfrac{2}{-4x^2+8x-5}\)
Cho \(A=\left(\dfrac{3}{2x}-\dfrac{3x-3}{1-2x}+\dfrac{2x^2+1}{4x^2-2x}\right).\dfrac{x}{2x+1}\). CMR: Khi biểu thức A xác định thì giá trị của A ko phụ thuộc vào giá trị của x