Những câu hỏi liên quan
CH
Xem chi tiết
LQ
Xem chi tiết
TT
Xem chi tiết
DA
Xem chi tiết
ND
Xem chi tiết
NL
20 tháng 4 2022 lúc 23:10

\(\left(x^2+9\right)+\left(y^2+9\right)+3\left(x^2+y^2\right)\ge6x+6y+6xy=90\)

\(\Rightarrow4\left(x^2+y^2\right)+18\ge90\)

\(\Rightarrow x^2+y^2\ge18\)

\(P_{min}=18\) khi \(x=y=3\)

\(x+y+xy=15\Rightarrow\left\{{}\begin{matrix}x\le15\\y\le15\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\left(x-15\right)\le0\\y\left(y-15\right)\le0\end{matrix}\right.\)

\(\Rightarrow x^2+y^2\le15x+15y\) (1)

Cũng từ đó ta có: \(\left(x-15\right)\left(y-15\right)\ge0\Rightarrow xy\ge15x+15y-225\)

\(\Rightarrow16x+16y-225\le x+y+xy=15\)

\(\Rightarrow x+y\le15\) (2)

(1);(2) \(\Rightarrow x^2+y^2\le15.15=225\)

\(P_{max}=225\) khi \(\left(x;y\right)=\left(0;15\right);\left(15;0\right)\)

Bình luận (0)
LT
Xem chi tiết
CC
19 tháng 5 2017 lúc 12:26

Từ bài ra ta có.

\(x+y=\sqrt{x+6}+\sqrt[]{y+6}\) 

\(P^2=x+y+12+2.\sqrt{x+6}.\sqrt{y+6}=P+12+2.\sqrt{x+6}.\sqrt{y+6}\)

Mà \(2\sqrt{\left(x+6\right)\left(y+6\right)}\le x+6+y+6=P+12\)

Nên \(P^2\le2P+24\Leftrightarrow P^2-2P+1\le25\)

==>\(\left(P-1\right)^2\le25\Leftrightarrow-5\le P-1\le5\)

Đến đây bạn tự giải tiếp hộ nhé. 

Có gì sai sót xin thứ lỗi. 

Bình luận (0)
H24
24 tháng 2 2019 lúc 8:06

\(x-\sqrt{x+6}=\sqrt{y+6}-y\)

\(\Leftrightarrow P=x+y=\sqrt{x+6}+\sqrt{y+6}\)

Suy ra \(P^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\le x+y+12+2.\frac{x+y+12}{2}\)

\(\Leftrightarrow P^2\le2P+24\Leftrightarrow P^2-2P-24\le0\Leftrightarrow-4\le P\le6\)

Bình luận (0)
H24
24 tháng 2 2019 lúc 8:07

Thêm ĐK: \(x,y\ge-6\)

Bình luận (0)
PH
Xem chi tiết
NT
Xem chi tiết
HH
5 tháng 8 2016 lúc 21:20
GTNN : Áp dụng bđt : \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\)(Dấu "=" xảy ra khi a = b) được : 

\(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}\). Dấu "=" xảy ra khi x = y = 1/2

Min A = 1/2 tại x = y = 1/2

GTLN : Ở đây , nếu điều kiện bài toán là x>0 , y>0 thì không xác định được Max.

Do vậy , để tìm Max cần phải sửa điều kiện thành : \(\hept{\begin{cases}x\ge0\\y\ge0\\x+y=1\end{cases}}\) (1)

Ta giải như sau : Từ (1) ta suy ra : \(0\le x\le1\)\(0\le y\le1\)

\(\Rightarrow x^2+y^2\le0+1=1\). Dấu "=" xảy ra khi một trong hai số x,y bằng 0

Vậy ....

Bình luận (0)
NT
Xem chi tiết
HH
5 tháng 8 2016 lúc 21:17
GTNN : Áp dụng bđt : \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\)(Dấu "=" xảy ra khi a = b) được : 

\(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}\). Dấu "=" xảy ra khi x = y = 1/2

Min A = 1/2 tại x = y = 1/2

GTLN : Ở đây , nếu điều kiện bài toán là x>0 , y>0 thì không xác định được Max.

Do vậy , để tìm Max cần phải sửa điều kiện thành : \(\hept{\begin{cases}x\ge0\\y\ge0\\x+y=1\end{cases}}\) (1)

Ta giải như sau : Từ (1) ta suy ra : \(0\le x\le1\)\(0\le y\le1\)

\(\Rightarrow x^2+y^2\le0+1=1\). Dấu "=" xảy ra khi một trong hai số x,y bằng 0

Vậy ....

Bình luận (0)
OC
18 tháng 9 2019 lúc 17:19

đáp số 

x,y=0

jhok tốt

Bình luận (0)