Những câu hỏi liên quan
NV
Xem chi tiết
NT
1 tháng 3 2016 lúc 21:28

de thế mà ko biết lam

Bình luận (0)
VG
21 tháng 3 2016 lúc 10:07

ai biết giải hộ. xin chỉ giáo

Bình luận (0)
VG
21 tháng 3 2016 lúc 10:08

à quên thỉnh giáo

Bình luận (0)
CD
Xem chi tiết
KK
15 tháng 10 2020 lúc 19:16

a) Áp dụng bđt AM-GM: \(+\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2zx\end{cases}}\)\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\left(đpcm\right)\)

Dấu "=" xay ra khi \(x=y=z\)

b) Bổ đề; \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

Áp dụng : \(A=x^2+y^2+z^2\ge\frac{3^2}{3}=3\). Dấu "=" xảy ra khi \(x=y=z=1\)

c) Bổ đề: \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)

Áp dụng: \(B\le\frac{3^2}{3}=3\). Dấu "=" xảy ra khi \(x=y=z=1\)

d) \(A+B=x^2+y^2+z^2+xy+yz+zx=\left(x+y+z\right)^2-\left(xy+yz+zx\right)\)

\(\ge\left(x+y+z\right)^2-\frac{\left(x+y+z\right)^2}{3}\)

\(=\frac{2}{3}\left(x+y+z\right)^2=6\)

Dấu "=" xảy ra khi \(x=y=z=1\)

Bình luận (0)
 Khách vãng lai đã xóa
KN
15 tháng 10 2020 lúc 19:39

Bài này tuy dễ nhưng hơi loằng ngoằng giữa các câu :))

a. Cách phổ thông : x2 + y2 + z2\(\ge\)xy + yz + zx

<=> 2 ( x2 + y2 + z2 )\(\ge\)2 ( xy + yz + zx )

<=> ( x2 - 2xy + y2 ) + ( y2 - 2yz + z2 ) + ( z2 - 2zx + x2 )\(\ge\)0

<=> ( x - y )2 + ( y - z )2 + ( z - x )2\(\ge\)0 ( * )

Vì ( x - y )2 \(\ge\)0 ; ( y - z )2 \(\ge\)0 ; ( z - x )2\(\ge\)0\(\forall\)x ; y ; z

=> ( * ) đúng 

=> A\(\ge\)B ; dấu "=" xảy ra <=> x = y = z

b. Xài Cauchy cho mới

( x2 + y2 + z2 ) ( 12 + 12 + 12 )\(\ge\)( x + y + z )2 = 32 = 9

<=> 3 ( x2 + y2 + z2 )\(\ge\)

<=> x2 + y2 + z2\(\ge\)3

Dấu "=" xảy ra <=> x = y = z = 1

Vậy minA = 3 <=> x = y = z = 1

c. Theo câu a và câu b ta có : 3 ( xy + yz + zx )\(\le\)( x + y + z )2 = 32 = 9

<=> xy + yz + zx\(\le\)3

Dấu "=" xảy ra <=> x = y = 1

Vậy maxB = 3 <=> x = y = 1

d. x + y + z = 3 . BP 2 vế ta được

x2 + y2 + z2 + 2( xy + yz + zx ) = 9

Hay A + 2B = 9 . Mà B\(\le\)3 ( câu b )

=> A + B \(\ge\)6

Dấu "=" xảy ra <=> x = y = z = 1

Vậy min A + B = 6 <=> x = y = z = 1

Bình luận (0)
 Khách vãng lai đã xóa
KK
15 tháng 10 2020 lúc 19:41

b) Cái này là bạn đang chứng minh dùng CBS mà ?

Bình luận (0)
 Khách vãng lai đã xóa
PT
Xem chi tiết
TN
5 tháng 2 2018 lúc 20:20

Dự đoán dấu "=" khi \(x=y=z=\frac{1}{\sqrt{3}}\Rightarrow S=1\)

Ta chứng minh \(S=1\) là GTNN của \(S\)

Thật vật ta có: \(\frac{1}{4x^2-yz+2}+\frac{1}{4y^2-xz+2}+\frac{1}{4z^2-xy+2}\ge1\)

\(\Leftrightarrow\frac{-4x^2+yz+1}{4x^2-yz+2}+\frac{-4y^2+xz+1}{4y^2-xz+2}+\frac{-4z^2+xy+1}{4z^2-xy+2}\ge0\)

\(\Leftrightarrow\frac{2yz-4x^2+xy+xz}{4x^2-yz+2}+\frac{2xz-4y^2+xy+yz}{4y^2-xz+2}+\frac{2xy-4z^2+xz+yz}{4z^2-xy+2}\ge0\)

\(\LeftrightarrowΣ_{cyc}\frac{-\left(2x+z\right)\left(x-y\right)-\left(2x+y\right)\left(x-z\right)}{4x^2-yz+2}\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(\left(x-y\right)\left(\frac{2y+z}{4y^2-xz+2}-\frac{2x+z}{4x^2-yz+2}\right)\right)\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(\left(x-y\right)^2\left(\frac{z^2+6yz+6xz+8xy-4}{\left(4y^2-xz+2\right)\left(4x^2-yz+2\right)}\right)\right)\ge0\) *Đúng*

BĐT cuối đúng hay ta có ĐCPM

Bình luận (0)
PT
10 tháng 2 2018 lúc 17:52

bạn có thể trình bày theo bdt cô si hay bunhia  được không

Bình luận (0)
KN
18 tháng 4 2020 lúc 10:11

Ta có:

Tương tự ta có: \(\frac{1}{4y^2-zx+2}\ge zx;\frac{1}{4z^2-xy+2}\ge xy\)

Cộng từng vế của 3 bất đẳng thức trên. ta được:

\(\frac{1}{4x^2-yz+2}+\frac{1}{4y^2-zx+2}+\frac{1}{4z^2-xy+2}\ge xy+yz+zx=1\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{\sqrt{3}}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết
DF
Xem chi tiết
TH
14 tháng 1 2021 lúc 10:38

Áp dụng bất đẳng thức AM - GM:

\(P\ge3\sqrt[3]{\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}\).

Áp dụng bất đẳng thức AM - GM ta có:

\(xy+1=xy+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}\ge5\sqrt[5]{\dfrac{xy}{4^4}}\).

Tương tự: \(yz+1\ge5\sqrt[5]{\dfrac{yz}{4^4}};zx+1\ge5\sqrt[5]{\dfrac{zx}{4^4}}\).

Do đó \(\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)\ge125\sqrt[5]{\dfrac{\left(xyz\right)^2}{4^{12}}}\)

\(\Rightarrow\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}\ge125\sqrt[5]{\dfrac{1}{4^{12}\left(xyz\right)^3}}\).

Mà \(xyz\le\dfrac{\left(x+y+z\right)^3}{27}=\dfrac{1}{8}\)

Nên \(\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}\ge125\sqrt[5]{\dfrac{8^3}{4^{12}}}=125\sqrt[5]{\dfrac{1}{2^{15}}}=\dfrac{125}{8}\)

\(\Rightarrow P\ge\dfrac{15}{2}\).

Vậy...

 

 

 

Bình luận (0)
HN
17 tháng 1 2021 lúc 18:31

Áp dụng bất đẳng thức AM - GM:

P≥33√(xy+1)(yz+1)(zx+1)xyz.

Áp dụng bất đẳng thức AM - GM ta có:

xy+1=xy+14+14+14+14≥55√xy44.

Tương tự: yz+1≥55√yz44;zx+1≥55√zx44.

Do đó (xy+1)(yz+1)(zx+1)≥1255√(xyz)2412

⇒(xy+1)(yz+1)(zx+1)xyz≥1255√1412(xyz)3.

Mà xyz≤(x+y+z)327=18

Nên  (xy+1)(yz+1)(zx+1)xyz≥1255√83412=1255√1215=1258 

⇒P≥152.

Bình luận (0)
NH
Xem chi tiết
GL
Xem chi tiết
TL
28 tháng 4 2020 lúc 19:25

Ta có \(\frac{1}{P}=\frac{\left(x+yz\right)\left(y+zx\right)\left(z+xy\right)^2}{x^3y^3}=\frac{x+yz}{y}\cdot\frac{y+zx}{x}\cdot\frac{\left(z+xy\right)^2}{x^2y^2}\)

\(=\left(\frac{x}{y}+z\right)\left(\frac{y}{x}+z\right)\left(\frac{z}{xy}+1\right)^2=\left[1+\left(\frac{x}{y}+\frac{x}{y}\right)z+x^2\right]\left(\frac{z}{xy}+1\right)^2\ge\left(1+2x+x^2\right)\)\(\left[\frac{4x}{\left(x+y\right)^2}+1\right]^2\)\(=\left(z+1\right)^2\left[\frac{4z}{\left(z-1\right)^2}+1\right]^2=\left[\frac{4z\left(z+1\right)}{\left(z-1\right)^2}+1\right]^2=\left[6+\frac{12}{z-1}+\frac{8}{\left(z-1\right)^2}+z-1\right]^2\)

\(=\left[6+\frac{12}{z-1}+\frac{3\left(z-1\right)}{4}+\frac{8}{\left(z-1\right)^2}+\frac{z-1}{8}+\frac{z-1}{8}\right]\)

Áp dụng BĐT Cosi ta có:

\(\frac{1}{P}\ge\left[6+2\sqrt{\frac{12}{z-1}\cdot\frac{3\left(z-1\right)}{3}}+3\sqrt[3]{\frac{8}{\left(z-1\right)^2}\cdot\frac{z-1}{8}\cdot\frac{z-1}{8}}\right]^2=\frac{729}{4}\)

\(\Rightarrow P\le\frac{4}{729}\). dấu "=" xảy ra <=> \(\hept{\begin{cases}x=y=2\\z=5\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết
TN
29 tháng 7 2017 lúc 17:47

Ta có: \(\sqrt{x^2+xy+y^2}=\sqrt{x^2+xy+\frac{y^2}{4}+\frac{3y^2}{4}}=\sqrt{\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}}\)

Tương tự ta viết lại A và áp dụng BĐT Mipcopxki :

\(A=\sqrt{\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}}+\sqrt{\left(y+\frac{z}{2}\right)^2+\frac{3z^2}{4}}+\sqrt{\left(z+\frac{x}{2}\right)^2+\frac{3x^2}{4}}\)

\(=\sqrt{\left(x+\frac{y}{2}\right)^2+\left(\frac{\sqrt{3}y}{2}\right)^2}+\sqrt{\left(y+\frac{z}{2}\right)^2+\left(\frac{\sqrt{3}z}{2}\right)^2}+\sqrt{\left(z+\frac{x}{2}\right)^2+\left(\frac{\sqrt{3}x}{2}\right)^2}\)

\(\ge\sqrt{\left(\frac{3\left(x+y+z\right)}{2}\right)^2+\left(\frac{\sqrt{3}\left(x+y+z\right)}{2}\right)^2}\)

\(\ge\sqrt{\left(\frac{3\cdot3}{2}\right)^2+\left(\frac{\sqrt{3}\cdot3}{2}\right)^2}=\sqrt{27}\)

Xảy ra khi x=y=z=1

Bình luận (0)
NC
Xem chi tiết
KK
21 tháng 1 2017 lúc 15:32

Áp dụng BĐT Cô - si cho 3 bộ số không âm

\(\Rightarrow\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2\left(yz+1\right)^2\left(xz+1\right)^2}{x^2y^2z^2\left(yz+1\right)\left(xz+1\right)\left(xy+1\right)}}=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)

Xét \(3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)

\(=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{xz+1}{z}\right)}\)

\(=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)

Áp dụng BĐT Cô - si

\(\Rightarrow\left\{\begin{matrix}y+\frac{1}{x}\ge2\sqrt{\frac{y}{x}}\\z+\frac{1}{y}\ge2\sqrt{\frac{z}{y}}\\x+\frac{1}{z}\ge2\sqrt{\frac{x}{z}}\end{matrix}\right.\)

\(\Rightarrow\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)\ge8\)

\(\Rightarrow3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\ge3\sqrt[3]{8}\)

\(\Rightarrow3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\ge6\)

\(\Leftrightarrow3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\ge6\)

\(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)

\(\Rightarrow\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge6\)

Vậy GTNN của \(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}=6\)

Bình luận (0)