Chứng tỏ rằng phân số 4n-1 phần 14n-1 là phân số tối giản [n thuộc N]
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
chứng tỏ rằng mọi phân số có dạng 2n+1 phần 4n+6 (n thuộc Z ) đều là phân số tối giản
2n+1chia hết cho d ; 4n+6 chia hết cho d suy ra 2n+3 chia hết cho d
suy ra (2n+3)-(2n+1) chia hết cho d suy ra 2 chia hết cho d hay d thuộc U(2)={2;-2;1;-1}
vì 2n+1 là số lẻ nên d={1;-1}
suy ra 2n+1phần 4n+6 là phân số tối giản
2n+1chia hết cho d ; 4n+6 chia hết cho d suy ra 2n+3 chia hết cho d
suy ra (2n+3)-(2n+1) chia hết cho d suy ra 2 chia hết cho d hay d thuộc U(2)
={2;-2;1;-1}
vì 2n+1 là số lẻ nên d={1;-1}
suy ra 2n+1phần 4n+6 là phân số tối giản
chứng tỏ rằng các phân số sau là phân số tối giản với mọi n thuộc N
a> A=2n+3/4n+5
b> B=2n+1/5n+2
c> C=14n+3/21n+4
Cho n thuộc N, Chứng tỏ rằng phân số 14n+3/21n+5 là phân số tối giản.
Đặt \(\left(14n+3,21n+5\right)=d\).
Suy ra
\(\hept{\begin{cases}14n+3⋮d\\21n+5⋮d\end{cases}}\Rightarrow2\left(21n+5\right)-3\left(14n+3\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Cho n thuộc N. Chứng tỏ rằng phân số: 14n+3/21n+5 là phân số tối giản
Gọi d = ƯCLN ( 14n + 3 , 21n + 5 )
Xét hiệu :
\(\left(21n+5\right)-\left(14n+3\right)⋮d\)
\(2\left(21n+5\right)-3\left(14+3\right)⋮d\)
\(42n+10-42n-9⋮d\)
\(10-9⋮d\)
\(1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)\)
\(\RightarrowƯ\left(1\right)=1\Rightarrow d=1\)
Vậy....
#Louis
chứng tỏ rằng mọi phân số có dạng 2n+1 phần 4n+6 với n thuộc Z đều là phân số tối giản
Gọi UCLN(2n+1,4n+6)=d
Ta có:2n+1 chia hết cho d
4n+6 chia hết cho d
=>2(2n+1) chia hết cho d
4n+6 chia hết cho d
=>4n+2 chia hết cho d
4n+6 chia hết cho d
=>(4n+6)-(4n+2) chia hết cho d
=>4 chia hết cho d
=>d={1,2,4}
Mà 4n+6 không chia hết cho 4
=>d={1,2}
Mà 2n+1 không chia hết cho 2
=>d=1
Vậy phân số \(\frac{2n+1}{4n+6}\) tối giản
Bài 1 : Chứng tỏ rằng mọi phân số có dạng 2n+1 phần 4n+6 ( n thuộc N ) đều lá phân số tối giản ?
Gọi d là ƯC(2n+1;4n+6)
Ta có 2n+1 chia hết cho d
4n+6 chia hết cho d
=> 2(2n+1) chia hết cho d
4n+6 chia hết cho d
=> 4n+2 chia hết cho d
4n+6 chia hết cho d
=> (4n+6)-(4n+2) chia hết cho d
=> 4 chia hết cho d
= d E Ư(4)={-1;1;-2;2;-3;3;-4;4}
Vì 2n+1 là số lẻ nên nó ko chia hết cho -2;2;-4;4
Vậy d chỉ có thể là -1 và 1
Vì d chỉ có thể là -1 hoặc 1 nên 2n+1/4n+6 là phân số tối giản
bạn cho mình hỏi 4n+2 bạn sao ra vậy
Chứng tỏ với mọi n thuộc N* thì các phân số sau sẽ tối giản:
a)2n+3/6n+8
b)4n+1/14n+3
Cho n ∈ N. Chứng tỏ rằng phân số
14 n + 3 21 n + 5 là phân số tối giản
Đặt d = ƯCLN( 14n + 3, 21n + 5 ) ( d ∈ N* )
Ta có: 14n + 3 ⋮ d và 21n + 5 ⋮ d
⇒ 3( 14n + 3 ) ⋮ d và 2( 21n + 5 ) ⋮ d ⇒ 42n + 9 ⋮ d và 42n + 10 ⋮ d
⇒ ( 42n + 9 ) – ( 42n + 10 ) ⋮ d ⇒ 1 ⋮ d . Do đó d = 1
Vậy 14 n + 3 21 n + 5 là phân số tối giản
Cho n ∈ N . Chứng tỏ rằng phân số 14 n + 3 21 n + 5 là phân số tối giản