Những câu hỏi liên quan
NP
Xem chi tiết
VT
25 tháng 11 2016 lúc 10:22

Áp dụng BĐT : \(x^2+y^2\ge2xy\) ( xảy ra đẳng thức khi \(x=y\) ) , ta có :

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2.\frac{a}{b}.\frac{b}{c}=2.\frac{a}{c}.\) Tương tự : \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2.\frac{b}{a};\frac{c^2}{a^2}+\frac{a^2}{b^2}\ge2.\frac{c}{b}\)

Cộng từng vế ba bất đẳng thức trên :

\(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)\)

\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{c}+\frac{b}{a}+\frac{c}{b}.\)

Bình luận (1)
TT
Xem chi tiết
PN
12 tháng 2 2016 lúc 21:10

Đề sai ở mẫu ấy! Mẫu chẳng có cái nào bình phương lên đâu bạn ạ!

Bình luận (0)
TT
12 tháng 2 2016 lúc 21:12

Phước Nguyễn bạn chắc là đề sai chứ /??/

Bình luận (0)
PA
12 tháng 2 2016 lúc 21:18

umk mk cũng nghĩ như phước nguyễn đó chắc đề sai 

Bình luận (0)
BL
Xem chi tiết
BL
7 tháng 12 2019 lúc 16:55

Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira,

Nguyễn Thị Ngọc Thơ, @tth_new

help me! cần gấp lắm ạ!

thanks nhiều!

Bình luận (0)
 Khách vãng lai đã xóa
HD
Xem chi tiết
H24
Xem chi tiết
KH

ok , cảm ơn bạn !!!

Bài toán rất hay và bổ ích !!!

Bình luận (0)
KB
8 tháng 2 2019 lúc 20:21

Đây nhé 

Đặt b + c = x ; c + a = y ;  a + b = z 

\(\Rightarrow\hept{\begin{cases}x+y=2c+b+a=2c+z\\y+z=2a+b+c=2a+x\\x+z=2b+a+c=2b+y\end{cases}}\)

\(\Rightarrow\frac{x+y-z}{2}=c;\frac{y+z-x}{2}=a;\frac{x+z-y}{2}=b\)

Thay vào PT đã cho ở đề bài , ta có : 

\(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)

\(=\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\)

\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)

( cái này cô - si cho x/y + /x ; x/z + z/x ; y/z + z/y) 

Bình luận (0)
PN
23 tháng 8 2020 lúc 21:22

e cũng có 1 vài cách chứng minh khá là cổ điển ạ !

Sử dụng BĐT AM-GM ta có :

\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=2.\frac{a}{2}=a\)

Bằng cách chứng minh tương tự :

\(\frac{b^2}{a+c}+\frac{a+c}{4}\ge b;\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)

Cộng theo vế các bđt cùng chiều ta được :

\(\frac{a^2}{c+b}+\frac{b^2}{a+c}+\frac{c^2}{a+b}+\frac{2\left(a+b+c\right)}{4}\ge a+b+c\)

\(< =>\frac{a^2}{b+c}+\frac{a}{2}+\frac{b^2}{a+c}+\frac{b}{2}+\frac{c^2}{a+b}+\frac{c}{2}\ge a+b+c\)

\(< =>\frac{a^2}{b+c}+a+\frac{b^2}{a+c}+b+\frac{c^2}{a+b}+c\ge\frac{3}{2}\left(a+b+c\right)\)

\(< =>\frac{a\left(a+b+c\right)}{b+c}+\frac{b\left(a+b+c\right)}{a+c}+\frac{c\left(a+b+c\right)}{b+a}\ge\frac{3}{2}\left(a+b+c\right)\)

\(< =>\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\left(Q.E.D\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
H24
7 tháng 10 2017 lúc 17:12

2/ GT <=> \(\left(a+b+c\right)abc\ge ab+bc+ca\)

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)abc}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

Sao hôm thứ 7 nghỉ

Bình luận (0)
SK
Xem chi tiết
ML
12 tháng 8 2016 lúc 8:49

1.

\(\frac{a^5}{b^3}+ab\ge2\sqrt{\frac{a^5}{b^3}.ab}=2.\frac{a^3}{b}\)

Tương tự và cộng lại:

\(\frac{a^5}{b^3}+\frac{b^5}{c^3}+\frac{c^5}{a^3}\ge2\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)-\left(ab+bc+ca\right)\)(1)

Lại có: \(\frac{a^3}{b}+ab\ge2\sqrt{\frac{a^3}{b}.ab}=2a^2\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\ge2\left(ab+bc+ca\right)-\left(ab+bc+ca\right)\)

\(=ab+bc+ca\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}-\left(ab+bc+ca\right)\ge0\)

Vậy từ (1) ta có đpcm.

2. 

\(\frac{a^5}{bc}+abc\ge2\sqrt{\frac{a^5}{bc}.abc}=2a^3\)

Tương tự và cộng lại 

\(A=\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}\ge2\left(a^3+b^3+c^3\right)-3abc\ge a^3+b^3+c^3+3abc-3abc\)

\(\Rightarrow A\ge a^3+b^3+c^3=VP\)

Bình luận (0)
HH
Xem chi tiết
TP
3 tháng 10 2019 lúc 18:12

Cách 1:

Áp dụng bđt Bunhiacopxki :

\(VT=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\cdot\left(a+b+c\right)}=\frac{a+b+c}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Cách 2:

Áp dụng bđt Cô-si :

\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2\cdot\left(b+c\right)}{4\cdot\left(b+c\right)}}=a\)

Tương tự : \(\frac{b^2}{c+a}+\frac{c+a}{4}\ge b\); \(\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)

Cộng vế :

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge a+b+c-\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Bình luận (4)
H24
23 tháng 11 2019 lúc 9:18

Cách 1: Svac:

\(VT\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

Đẳng thức xảy ra khi a = b = c

Cách 2: SOS:

\(VT-VP=\left(\frac{a^2}{b+c}-\frac{a}{2}\right)+\left(\frac{b^2}{c+a}-\frac{b}{2}\right)+\left(\frac{c^2}{a+b}-\frac{c}{2}\right)\)

\(=\Sigma_{cyc}\left(\frac{a\left(a-b\right)}{2\left(b+c\right)}-\frac{b\left(a-b\right)}{2\left(c+a\right)}\right)=\Sigma\frac{\left(a-b\right)^2\left(a+b+c\right)}{2\left(b+c\right)\left(c+a\right)}\ge0\)

Vậy có đpcm.

Cách 3: Đợi tí em show hàng phương pháp mới:D

Bình luận (0)
 Khách vãng lai đã xóa
H24
24 tháng 11 2019 lúc 13:37

Giả sử \(c=min\left\{a,b,c\right\}\)

\(VT-VP=\frac{\left(a-b\right)^2\left(a+b+c\right)\left(7a+7b-2c\right)+\left(a+b-2c\right)^2\left(a+b+c\right)\left(a+b+2c\right)}{8\left(a+b\right)\left(a+c\right)\left(b+c\right)}\ge0\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết