Cho tam giác ABC đều cạnh a, trọng tâm G.Tính
Cho tam giác đều ABC cạnh a, G là trọng tâm của tam giác. Khẳng định nào sau đây là đúng?
A. A G → = a 3 2
B. A G → + B G → = a
C. A G → + B G → + C G → = 0
D. A G → + B G → + C G → = 0 →
Nếu G là trong tâm tam giác ABC thì
G A → + G B → + G C → = 0 → ⇔ A G → + B G → + C G → = 0 → ⇔ A G → + B G → + C G → = 0 → = 0
Đáp án C
cho tam giác ABC đều cạnh a trọng tâm G. Tích vô hướng của hai vecto BC*CG bằng
Cho hình chóp tam giác đều S.ABC có tất cả các cạnh đều bằng a, gọi G là trọng tâm tam giác SBC. Khoảng cách từ G đến mặt phẳng (ABC)bằng
A. a 6 9
B. a 3 6
C. a 6 6
D. a 6 12
Cho tam giác ABC đều cạnh bằng a, trọng tâm G. Tam giác AGC quay quanh AG tạo thành một khối tròn xoay có thể tích là:
A . πa 3 3 36
B . πa 3 3 12
C . πa 3 3 24
D . πa 3 3 18
Gọi cho là ai trọng tâm của tam giác đều ABC cạnh 2 cm chứng minh cách đều ba cạnh của tam giác ABC từ đó tính khoảng cách từ G tới mỗi canh của 1 tam giác
Cho lăng trụ tam giác ABC.A’B’C’ có đáy ABC là tam giác đều cạnh AB = a, AA'= 2a. Hình chiếu của A lên mặt phẳng (ABC) trùng với trọng tâm tam giác ABC. Thể tích khối lăng trụ ABC.A’B’C’ là:
A . a 3 11 4
B . a 3 11 12
C . a 3 47 8
D . 3 a 3 4
Đáp án A
Xét ∆AOA’, ta có:
AO2 + OA’2 = AA’2
Vậy
Cho lăng trụ tam giác ABC.A’B’C’ có đáy ABC là tam giác đều cạnh AB=a,AA'=2a . Hình chiếu của 'A lên mặt phẳng (ABC) trùng với trọng tâm tam giác ABC. Thể tích khối lăng trụ ABC.A’B’C’ là:
A. a 3 11 4
B. a 3 11 12
C. a 3 47 8
D. a 3 4
Cho lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, độ dài cạnh bên bằng 2 a 3 , hình chiếu của đỉnh A’ trên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC. Thể tích khối lăng trụ ABC.A’B’C’ bằng
A. a 3 3 36 .
B. a 3 3 6 .
C. a 3 3 12 .
D. a 3 3 24 .