Những câu hỏi liên quan
CD
Xem chi tiết
NT
4 tháng 1 2018 lúc 15:51

10 ≤ n ≤ 99 => 21 ≤ 2n+1 ≤ 201

2n+1 là số chính phương lẻ nên

2n+1∈ {25;49;81;121;169}

=> n ∈{12;24;40;60;84}

=> 3n+1∈{37;73;121;181;253}

=> n = 40

Bình luận (0)
LN
Xem chi tiết
H24
17 tháng 2 2022 lúc 21:41

2n+1 là số chính phương lẻ 

=> 2n+1 chia 8 dư 1

=> 2n ⋮ 8 => n ⋮ 4

=> 3n+1 cũng là số chính phương lẻ

=> 3n+1 chia 8 dư 1 

=> 3n ⋮ 8

=> n ⋮ 8 (1)

 

Do 2n+1 và 3n+1 đều là số chính phương lẻ có tận cùng là 1;5;9.do đó khi chia cho 5 thì có số dư là 1;0;4
Mà (2n+1)+(3n+1)=5n+2 ,do đo 2n+1 và 3n+1 khi cho cho 5 đều dư 1
⟹n ⋮ 5(2)

Từ (1) và (2)⟹n⋮40

n là số tự nhiên có 2 chữ số =>  n = 40 (thoả mãn ) hoặc n = 80 ( loại do 2n+1 không là số chính phương)

 

Cách 2 đơn giản hơn:

 

10 ≤ n ≤ 99 ↔ 21 ≤ 2n+1 ≤ 201
2n+1 là số chính phương lẻ nên
2n+1∈ {25;49;81;121;169}
↔ n ∈{12;24;40;60;84}
↔ 3n+1∈{37;73;121;181;253}
↔ n=40

 

Bình luận (1)
TH
Xem chi tiết
H24
Xem chi tiết
PN
Xem chi tiết
LD
Xem chi tiết
VL
Xem chi tiết
NK
23 tháng 12 2015 lúc 22:09

ta có

\(A=n^6-n^4+2n^3+2n^2=\left[\left(n^3\right)^2+2n^3+1\right]-\left[\left(n^2\right)^2-2n^2+1\right]\)

\(=\left(n^3+1\right)^2-\left(n^2-1\right)^2=\left(n^3+n^2\right)\left(n^3-n^2+2\right)=n^2\left(n+1\right)\left(n+1\right)\left(n^2-2n+2\right)\)\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)

Ta có

\(n^2-2n+2>n^2-2n+1=\left(n-1\right)^2\left(1\right)\)

Mặt khác \(n^2-2n+2=n^2-2\left(n-1\right)\left(2\right)\)

Từ (1) và (2)

=>\(\left(n-1\right)^2

Bình luận (0)
TA
Xem chi tiết
NH
3 tháng 3 2023 lúc 18:41

vi n la stn co 2 c/s 

⇒   10≤n≤99

⇒  20≤2n≤198

⇒  21≤2n+1≤199

ma 2n+1 la scp 

2n+1ϵ 25;49;81;121;169

ta co bang 

2n+1 25   49    81        169  

n       12   24    40           84 

3n+1  37   73    121=112    153 

kl       L      C      C               L 

Bình luận (0)
KT
Xem chi tiết