Những câu hỏi liên quan
ND
Xem chi tiết
KN
12 tháng 11 2020 lúc 21:23

Lấy F là điểm đối xứng với B qua AM, gọi O là giao điểm của BF với AM

\(\Delta\)AOB vuông tại O có ^MAB = 300 (gt) nên ^ABO = 600

Lại có: AF = AB (theo tính chất đối xứng) nên \(\Delta\)AFB đều => ^AFB = 600

\(\Delta\)AFB đều có AO là đường cao nên cũng là trung tuyến => FO = OB

Có M là trung điểm của BC, O là trung điểm của FB nên OM là đường trung bình của \(\Delta\)BFC

=> OM // CF mà OM\(\perp\)FB nên BF\(\perp\)FC => \(\Delta\)BFC vuông tại F hay ^BFC = 900

Ta có: ^CFA = ^BFC + ^BFA = 900 + 600 = 1500

\(\Delta\)AFB đều có AO là đường cao nên cũng là phân giác => ^OAF = 300 => ^FAC = 150

Suy ra ^FCA = 150 hay \(\Delta\)CFA cân tại F => CF = AF

Mà AF = FB nên BF = FC do đó \(\Delta\)BFC vuông cân tại F => ^FBC = 450

=> ^ABC = ^CBF + ^FBA = 450 + 600 = 1050

Vậy ^BCA = 1800 - 1050 - (150 + 300) = 300

Bình luận (0)
 Khách vãng lai đã xóa
ND
26 tháng 3 2016 lúc 21:16

Các bạn trả lời hộ mình đi

Bình luận (0)
DS
11 tháng 11 2020 lúc 20:55

BCA\(=60\)nhớ cho mình

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
QL
Xem chi tiết
HM
18 tháng 9 2023 lúc 18:14

Ta có:

\(\widehat {AMB} + \widehat {AMC} = {180^o}\)( 2 góc kề bù)

\(\begin{array}{l} \Rightarrow \widehat {AMB} + {80^o} = {180^o}\\ \Rightarrow \widehat {AMB} = {100^o}\end{array}\)

Áp dụng định lí tổng ba góc trong một tam giác:

+) Trong tam giác AMB có:

\(\begin{array}{l}\widehat {ABC} + \widehat {MAB} + \widehat {AMB} = {180^O}\\ \Rightarrow \widehat {ABC} + {20^o} + {100^o} = {180^O}\\ \Rightarrow \widehat {ABC} = {60^o}\end{array}\)

+) Trong tam giác ABC có:
\(\begin{array}{l}\widehat {BAC} + \widehat {ACB} + \widehat {CBA} = {180^o}\\ \Rightarrow \widehat {BAC} + {60^o} + {60^o} = {180^o}\\ \Rightarrow \widehat {BAC} = {60^o}\end{array}\)

Bình luận (0)
H24
Xem chi tiết
DN
Xem chi tiết
LV
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
H24
3 tháng 3 2020 lúc 22:00

Bài 1 :

Bình luận (0)
 Khách vãng lai đã xóa
NL
3 tháng 3 2020 lúc 23:09

Bài 2 :

A B C D M 1 2 1 2

a, - Kéo dài AM tới điểm D sao cho AM = MD .

- Ta có : \(\widehat{M_1}\)\(\widehat{M_2}\) đối đỉnh .

=> \(\widehat{M_1}\) = \(\widehat{M_2}\)

- Xét \(\Delta ABM\)\(\Delta DCM\) có :

\(\left\{{}\begin{matrix}BM=CM\left(GT\right)\\\widehat{M_1}=\widehat{M_2}\left(cmt\right)\\AM=DM\left(GT\right)\end{matrix}\right.\)

=> \(\Delta ABM\) = \(\Delta DCM\) ( c - g - c )

=> \(\widehat{A_1}=\widehat{D_2}\) ( góc tương ứng )

=> \(AB=CD\) ( cạnh tương ứng )

\(AB< AC\left(GT\right)\)

=> \(CD< AC\)

=> \(\widehat{MAC}< \widehat{ADC}\) ( quan hệ cạnh góc đối diện )

\(\widehat{ADC}=\widehat{BAM}\) ( cmt )

=> \(\widehat{BAM}>\widehat{MAC}\) ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
H24
3 tháng 3 2020 lúc 21:49

Nguyễn Ngọc Lộc Nguyễn Lê Phước ThịnhJeong Soo In?Amanda?Trần Quốc KhanhPhạm Lan HươngNatsu Dragneel 2005Trung NguyenNo choice teenPhạm Thị Diệu HuyềnTrên con đường thành công không có dấu chân của kẻ lười biếngNguyễn Thành TrươngAkai HarumaNguyễn Việt LâmHoàng YếntthNguyễn Văn Đạt

Bình luận (0)
 Khách vãng lai đã xóa