cmr với mỗi số nguyên tố p tồn tại vô số số tự nhiên n sao cho 2n -n chia hết cho p
CMR:Với mỗi số nguyên tố p đều tồn tại vô số số TN n sao cho 2n-n chia hết cho p
CMR với mỗi số nguyên tố p đều tồn tại vô số số tự nhiên n sao cho 2^n-n chia hết cho p
1.CMR trong 12 số tự nhiên bất kì có thể tìm đc 2 số có hiệu của chúng chia hết cho 11
2.CMR trong 15 số tự nhiên bất kì có thể tìm đc 2 số có hiệu của chúng chia hết cho 14
3.CM tồn tại 1 số chia hết cho 1995 mà các chữ số của số đó chỉ gồm các chữ số 2 và chữ số 0
4.CMR nếu có n số tự nhiên có tích bằng n và có tổng bằng 2012 thì n chia hết cho 4
5.tìm số tự nhiên n sao cho :
a) n+3 chia hết cho n-2 ( n>2)
b)2n+9 chia hết cho n-3 ( n>3)
c)(16-3n ) chia hết cho (n+4) với n<6
d) (5n+2) chia hết cho (9-2n)
Bài 5 : ( Mình dùng dấu chia hết là dấu hai chấm )
a) n+3 : n-2
=> n+3 : n+3-5
=> n+3 : 5 ( Vì n+3 : n+3 )
=> n+3 là Ư(5) => Bạn tự làm tiếp nhé!
b) 2n+9 : n-3
=> n + n + 11 - 3 : n-3
=> n + 11 : n-3
=> n + 14 - 3 : n-3
=> 14 : n - 3 ( Vì n - 3 : n-3 )
=> n-3 là Ư(14) => Tự làm tiếp
c) + d) thì bạn tự làm nhé!
-> Chúc bạn học giỏi :))
Chứng minh rằng với mỗi số nguyên tố p có vô số dạng 2 n - n chia hết cho p.
p = 2 lấy n chẳn; p > 2 lấy n = (pk – 1)(p – 1),
cmr tồn tại vô số số nguyên dương a sao cho số z = n^4 +a không phải là số nguyên tố
1.Cho 5 số tự nhiên bất kì.CMR trong 5 số đó tồn tại 3 số có tổng chia hết cho 3
2.Cho 3 số nguyên tố lớn hơn 3.CMR tồn tại 2 số có tổng hoặc hiệu chia hết cho 2
3.CMR trong 12 số tự nhiên tùy ý, bao giờ ta cũng chọn đc 2 số mà hiệu của chúng chia hết cho 11
Có 5 số, và 3 số dư khi chia cho 3 là 0;1;2
Nếu có 3,4 hay 5 số mà có cùng số dư khi chia cho 3 thì tổng 3 trong số đó chia hết cho 3.
Nếu có ít hơn 3 nghĩa là nhiều nhất 2 số có cùng số dư khi chia cho 3 thì trong 5 số đó cùng tồn tại các số chia 3 dư 0;1;2 nên tổng 3 số có số dư khi chia cho 3 khác nhau sẽ chia hết cho 3.
Do đó trong 5 số nguyên bất kì luôn tìm được 3 số có tổng chia hết cho 3.
a) Tìm số tự nhiên n sao cho 4n + 7 chia hết cho 2n + 1 b) Tìm số nguyên tố P sao cho P + 8 và P + 16 cũng là số nguyên tố
a) 4n + 7 chia hết cho 2n + 1
⇒ 4n + 2 + 5 chia hết cho 2n + 1
⇒ 2(2n + 1) + 5 chia hết cho 2n + 1
⇒ 5 chia hết cho 2n + 1
⇒ 2n + 1 ∈ Ư(5) (ước dương)
⇒ 2n + 1 ∈ {1; 5}
⇒ n ∈ {0; 2}
a) Cho p là số nguyên tố lớn hơn 3, cmr: (p-1)(p+1) chia hết cho 24
b) CMR: 2n+1 và 3n+1 nguyên tố cùng nhau. Biết n là số tự nhiên
a) \(p\)là số nguyên tố lớn hơn \(3\)nên \(p\)là số lẻ.
\(p=2k+1\)suy ra \(\left(p-1\right)\left(p+1\right)=2k\left(2k+2\right)=4k\left(k+1\right)⋮8\)
(vì \(k\left(k+1\right)\)là tích của hai số tự nhiên liên tiếp nên chia hết cho \(2\))
\(p\)là số nguyên tố lớn hơn \(3\)nên \(p=3k\pm1\).
Khi đó \(\left(p-1\right)\left(p+1\right)\)sẽ chia hết cho \(3\).
Mà \(\left(8,3\right)=1\)nên \(\left(p-1\right)\left(p+1\right)\)chia hết cho \(8.3=24\).
b) Đặt \(\left(2n+1,3n+1\right)=d\).
Suy ra
\(\hept{\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}}\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
1. Cho n là số tự nhiên \(\left(n\ge1\right)\). Giả sử \(2^n+1\)là 1 số nguyên tố. Cmr : n là một lũy thừa của 2
2. Cmr : tồn tại vô số số nguyên dương a sao cho n^4+a là k số nguyên tố \(\forall n\inℕ^∗\)
3. Cmr : \(\forall\)số nguyên tố p > 7 ta có : \(3^p-2^p-1⋮42\)