Những câu hỏi liên quan
MH
Xem chi tiết
H24
24 tháng 7 2018 lúc 10:50

a) Các số có dạng : \(\frac{1}{a\left(a+1\right)}=\frac{\left(a+1\right)-a}{a\left(a+1\right)}=\frac{1}{a}-\)\(\frac{1}{a+1}\)

Thế vào bởi các số sẽ có kết quả

b) Các số có dạng : \(\frac{1}{a\left(a+2\right)}=\frac{1}{2}.\frac{2}{a\left(a+2\right)}=\frac{1}{2}.\frac{\left(a+2\right)-a}{a\left(a+2\right)}\)\(=\frac{1}{2}.\left(\frac{1}{a}-\frac{1}{a+2}\right)\)

Làm tương tự trên

c) Lấy nhân tử chung là 5 rồi làm như câu a)

Bình luận (0)
MH
24 tháng 7 2018 lúc 10:59

bạn có thể làm ra hộ mình được ko mình ko hiểu

Bình luận (0)
MH
24 tháng 7 2018 lúc 11:02

a là j vậy

Bình luận (0)
MT
Xem chi tiết
H24
18 tháng 4 2020 lúc 22:31

S = 2020 + 2019 - 2018 - 2017 + 2016 + 2015 - 2014 - 2013 + ... + 4 + 3 - 2 - 1

= ( 2020 + 2019 - 2018 - 2017 ) + ( 2016 + 2015 - 2014 - 2013 ) + ... + ( 4 + 3 - 2 - 1 )   (có tất cả 2020 : 4 = 505 nhóm)

= 4 + 4 + ... + 4

= 4. 505 = 2020

Vậy S = 2020.

Bình luận (0)
 Khách vãng lai đã xóa
H24
18 tháng 4 2020 lúc 22:32

S= 2020

Bạn huyền đúng rồi đó .

hok tốt

Bình luận (0)
 Khách vãng lai đã xóa
VN
18 tháng 4 2020 lúc 23:14

S=2020

Bình luận (0)
 Khách vãng lai đã xóa
LP
Xem chi tiết
HT
19 tháng 2 2020 lúc 13:52

ta có:

S3=[1+(-2)]+[(-3)+4]+...+[2017+(-2018)] + [-2019+2020]

S3=-1+(-1)+...+(-1)+(-1)

S3=1010.(-1)=-1010

Bài này mình làm rồi nên chắc chắn làm đúng đo

LINK HỘ MIK NHA

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
MS
26 tháng 6 2017 lúc 16:38

Mình sẽ làm mẫu chi tiết 1 câu,và bạn làm theo cách đó nha:

Dãy số trên cách nhau số đơn vị là:

16-15=1;17-16=1;........

Số các số hạng của dãy trên là:

(2017-15):1+1=2003(áp dụng quy tắc: Số đầu-số cuối chia khoảng cách +1)

Số cặp là: 2003:2=1001,5(cặp)
Tổng dãy số là:

1001,5(2017+15)=2035048(số cặp nhân với tổng 1 cặp)
Vậy...

Bình luận (1)
H24
26 tháng 6 2017 lúc 16:43

Giải:

a) Số số hạng của dãy S là:

\(\dfrac{\left(2017-15\right)}{1}+1=2003\) (số)

Tổng các số hạng của dãy S là:

\(\dfrac{\left(2017+15\right).2003}{2}=2035048\)

Vậy ...

b) Số số hạng của dãy S là:

\(\dfrac{\left(2017-1\right)}{2}+1=1009\) (số)

Tổng các số hạng của dãy S là:

\(\dfrac{\left(2017+1\right).1009}{2}=1018081\)

Vậy ...

c) Số số hạng của dãy S là:

\(\dfrac{\left(2018-2\right)}{2}+1=1009\) (số)

Tổng các số hạng của dãy S là:

\(\dfrac{\left(2018+2\right).1009}{2}=1019090\)

Vậy ...

d)Số số hạng của dãy S là:

\(\dfrac{\left(2019-101\right)}{2}+1=960\) (số)

Tổng các số hạng của dãy S là:

\(\dfrac{\left(2019+101\right).960}{2}=1017600\)

Vậy ...

Bình luận (3)
TN
Xem chi tiết
TN
Xem chi tiết
TT
Xem chi tiết
NL
25 tháng 12 2020 lúc 23:00

\(S=\dfrac{1}{2018!\left(2019-2018\right)!}+\dfrac{1}{2016!\left(2019-2016\right)!}+...+\dfrac{1}{2!\left(2019-2\right)!}+\dfrac{1}{0!\left(2019-0!\right)}\)

\(\Rightarrow2019!.S=\dfrac{2019!}{2018!\left(2019-2018\right)!}+\dfrac{2019!}{2016!\left(2019-2016\right)!}+...+\dfrac{2019!}{2!\left(2019-2\right)!}+\dfrac{2019!}{0!\left(2019-0\right)!}\)

\(=C_{2019}^{2018}+C_{2019}^{2016}+...+C_{2019}^2+C_{2019}^0\)

\(=\dfrac{1}{2}\left(C_{2019}^0+C_{2019}^1+...+C_{2019}^{2018}+C_{2019}^{2019}\right)\)

\(=\dfrac{1}{2}.2^{2019}=2^{2018}\)

\(\Rightarrow S=\dfrac{2^{2018}}{2019!}\)

Bình luận (0)
HL
Xem chi tiết
HT
10 tháng 3 2020 lúc 21:39

S= 2+(-3)+4+(-5)+6+(-7)+............ + 2016+(-2017)+2018+(-2019)+2020

S=[2+(-3)]+[4+(-5)]+[6+(-7)]+...+[2016+(-2017)]+[2018+(-2019)]+2020

S=-1+(-1)+(-1)+...+(-1)+2020         (Có 1009,5 số -1 )

S=-1.1009,5+2020

S=-1009,5+2020

S=1010,5

Bình luận (0)
 Khách vãng lai đã xóa
DK
Xem chi tiết