cho a,b thuộc Z thỏa mãn a+2b chia hết 11.Chứng tỏ:6a + b chia hết 11
Cho a,b là các số tự nhiên thỏa mãn tích (5a+6b)x(6a+5b) chia hết cho 11.
Chứng tỏ rằng tích (5a+6b)x(6a+5b) chia hết cho121
\(Giải\)
Vì: 11 là số nguyên tố mà:(5a+6b)(6a+5b) chia hết cho 11
nên ít nhất 1 trong 2 số trên chia hết cho 11
+) 2 số chia hết cho 11 khi đó (5a+6b)(6a+5b) chia hết cho 121
+) 5a+6b chia hết cho 11
=> 11a+11b-5a-6b chia hết cho 11 <=> 6a+5b chia hết cho 11
=> (5a+6b)(6a+5b) chia hết cho 121
+) 6a+5b chia hết cho 11
=> 11a+11b-6a-5b chia hết cho 11
<=> 5a+6b chia hết cho 11
=> (5a+6b)(6a+5b) chia hết cho 11
Vậy: nếu (5a+6b)(6a+5b) chia hết cho 11 thì tích đó cũng chia hết cho 121 (đpcm)
a, Cho a;b€N thỏa mãn: (11a+2b)chia hết cho 12.Chứng tỏ a+34b chia hết cho 12.
b, Cho a;b€N thỏa mãn: (2a+7b) chia hết cho 3.Chứng tỏ (4a+2b) chia hết cho 3.
Giúp mình nha!!!
Giả sử (4a+2b)⋮3(4a+2b)⋮3
⇒(4a+2b)+(2a+7b)⋮3⇒(4a+2b)+(2a+7b)⋮3
⇒(6a+9b)⋮3⇒(6a+9b)⋮3 (đúng)
=> Giả sử đúng
Vậy (4a+2b)⋮3
cho a,b thuộc Z thỏa mãn (16a+ 17b) (17a+16b) chia hết cho 11, chứng minh rằng (16a + 17b) (17a +16b) chia hết cho 121
Cho a, b * N thỏa mãn số M a b a b 9 11 7 chia hết cho 17. Chứng tỏ rằng M chia hết cho 289.
M a b a b 9 11 7 là như thế nào vậy bạn? Bạn cần viết rõ để mọi người hiểu đề của bạn hơn.
cho a,b là các số tự nhiên thỏa mãn tích (5a+6b)(6a+5b)chia hết cho 11.Chứng tỏ rằng tích (5a+6b)(6a+5b)chia hết cho 121.
mình đang gấp ,bạn nào giải nhanh và chi tiết mình tích cho
(5a+6b)(5a+6b)=11.11(a+b) chia hết cho 11
121 = 11.11
vậy ................... chia hết cho 121
ko chắc
cho biết 3a - 2b chia hết cho 11 ( a , b thuộc Z ) chứng minh rằng 2a - 5b chia hết cho 11
các bạn giúp mk nha
a,b thuộc z thỏa mãn (16a + 17b).(17a + 16b) chia hết cho 11 CMR (16a + 17b).(17a + 16b) chia hết cho 121
Có : ( 16a + 17b ) ( 17a + 16b ) : 11 ( vì 11 là số nguyên tố )
= 16a + 17b : 11
17a + 16b : 11
=G/s 16a + 17b : 11(1)
Mà ( 16a + 17b ) + ( 17a + 16b ) = ( 33a + 33b ) = 11 ( 3a + 3b ) : 11
= 17a + 16b : 11(2)
Từ ( 1 ) , ( 2 ) = ( 16a + 17b ) ( 17a +16b ) : 121
Ta có: \(\left(16a+17b\right)\left(17a+16b\right)⋮11\)
\(\Rightarrow\orbr{\begin{cases}16a+17b⋮11\\17a+16b⋮11\end{cases}}\)
Giả sử \(16a+17b⋮11\)
\(\Rightarrow16a+17b+17a+16b=\left(16a+17a\right)+\left(17b+16b\right)=33a+33b=33\left(a+b\right)\)
Vì \(33⋮11\) nên \(33\left(a+b\right)⋮11\)
Mà \(16a+17b⋮11\)
\(\Rightarrow17a+16b⋮11\)
Lại có: 11 là số nguyên tố
\(\Rightarrow\left(16a+17b\right)\left(17a+16b\right)⋮11^2=121\)
Vậy \(\left(16a+17b\right)\left(17a+16b\right)⋮121\).
cho a,b thuộc Z thỏa mãn (3a+2b).(2a+3b) chia hết cho5 .CMR (3a+2b).(2a+3b) chia hết cho 25
+)Theo bài:(3a+2b).(2a+3b)\(⋮\)5
=>[(3a+2b).(2a+3b)]2\(⋮\)52
=>[(3a+2b).(2a+3b)].[(3a+2b).(2a+3b)]\(⋮\)25
Mà[(3a+2b).(2a+3b)].[(3a+2b).(2a+3b)]\(⋮\)25
=>[(3a+2b).(2a+3b)]\(⋮\)25 hoặc [(3a+2b).(2a+3b)]\(⋮\)25
Mà [(3a+2b).(2a+3b)]=[(3a+2b).(2a+3b)]
=>[(3a+2b).(2a+3b)]\(⋮\)25(đpcm)Vậy[(3a+2b).(2a+3b)]\(⋮\)25Chúc bn học tốtCho a, b là các chữ số thỏa mãn [ a+ 2b ] chia hết 7. Chứng tỏ số abb chia hết 7
Gọi A = a + 2b và B = abb
Ta có : B = 100a + 11b và :
100A = 100 . ( a + 2b )
100A = 100a + 200b
=> 100A - B = 100a + 200b - 100a - 11b
=> 100A - B = 200b - 11b = 189b chia hết cho 7 ( vì 189 chia hết cho 7 )
=> 100A - B chia hết cho 7
mà A chia hết cho 7 => 100A chia hết cho 7 => B chia hết cho 7 ( đpcm )