Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NN
Xem chi tiết
KK
Xem chi tiết
LF
23 tháng 6 2017 lúc 22:31

C-S với Bunhia là 1 và là 1 trg hợp của Holder dạng 2 số \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)

AM-GM ng` việt gọi là cô si dạng 2 số \(a^2+b^2\ge2ab\)

Mincopski dạng 2 số \(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\ge\sqrt{\left(a+x\right)^2+\left(b+y\right)^2}\)

Bình luận (1)
HD
23 tháng 6 2017 lúc 22:54

* BĐT Cauchy - Schwars = BĐT Bunhiacopxki

- Thông thường :

( a2 + b2 )(c2 + d2 ) \(\ge\left(ac+bd\right)^2\)

Dấu "=" xảy ra tại : \(\dfrac{a}{c}=\dfrac{b}{d}\)

- Tổng quát với các bộ số : a1 , a2 , a3 , ... , an và : b1 , b2 , ... , bn

(a12 + a22 + ... + an2)(b12 + b22 + ... + bn2 ) \(\ge\left(a_1b_1+a_2b_2+...+a_nb_n\right)\)

Dấu "=" xảy ra tại : \(\dfrac{a_1}{b_1}=\dfrac{a_2}{b_2}=...=\dfrac{a_n}{b_n}\)

* BĐT AM-GM

- trung bình nhân (2 số)

với a,b \(\ge0\) , ta luôn có : \(\dfrac{a+b}{2}\ge\sqrt{ab}\) . Dấu "=" xảy ra tại a=b

- Trung bình nhân ( n số )

Với x1 , x1 , x3 ,..., xn \(\ge0\)

Ta luôn có : \(\dfrac{x_1+x_2+...+x_n}{n}\ge\sqrt[n]{x_1x_2.....x_n}\)

Dấu "=" xảy ra khi x1 = x2 =...=xn

-Trung bình hệ số :

Với các bộ số : x1 , x1 , x3 ,..., xn \(\ge0\)và a1, a2 , a3 ,... , an ( a1 , a2 ,..., an) là c1ác hệ số

Ta có : \(\dfrac{a_1x_1+a_2x_2+...+a_nx_n}{a}\ge\sqrt[a]{x_1^{a_1}.x_2^{a_2}.....x_n^{a_n}}\)

Dấu "=" xảy ra khi x1 = x2 = xn

=================

Cái mincopxki t ko biết , ngoài ra còng có BĐT Cauchy - dạng engel => lên googl seach có

Bình luận (0)
NC
Xem chi tiết
H24
24 tháng 6 2021 lúc 21:04

Trong toán học, bất đẳng thức AM-GM là bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm. Tên gọi đúng của bất đẳng thức này là bất đẳng thức AM-GM. Bất đẳng thức AM-GM là một bất đẳng thức cơ bản kinh điển quan trọng nhất của toán học sơ cấp, vì nó đã có khá nhiều cách chứng minh được đưa ra, hàng chục mở rộng, hàng chục kết quả chặt hơn đăng trên các diễn đàn toán học. Phần này tôi xin giới thiệu một kết quả chặt hơn bất đẳng thức AM-GM khác được suy ra từ chính cách chứng minh mới bất đẳng thức AM-GM (Cauchy - Cô-si).

                                                                                                                                                          # Aeri # 

Bình luận (0)
 Khách vãng lai đã xóa
NC
24 tháng 6 2021 lúc 21:04

Thanks bạn

Bình luận (0)
 Khách vãng lai đã xóa
VH
Xem chi tiết
PK
15 tháng 10 2015 lúc 17:08

mình copy trên google nè:Bất đẳng thức này ở VN gọi là bđt Cô-si (Cauchy) còn ở Mỹ gọi như trong tựa bài, hay gọi tắt là AM-GM inequality (arithmetic mean - geometric mean)

Bình luận (0)
H24
Xem chi tiết
HH
12 tháng 4 2018 lúc 21:10

phải

Bình luận (0)
HQ
12 tháng 4 2018 lúc 21:15

Hỏi làm gì lớp 9 học

Bình luận (4)
H24
22 tháng 9 2024 lúc 10:44

Không bn ơi

Bình luận (0)
VH
Xem chi tiết
AD
25 tháng 2 2020 lúc 20:50

Đặt \(P=x+y+\frac{1}{x}+\frac{1}{y}\)

\(=x+y+\frac{1}{4x}+\frac{3}{4x}+\frac{1}{4y}+\frac{3}{4y}\)

\(=\left(x+\frac{1}{4x}\right)+\left(y+\frac{1}{4y}\right)+\left(\frac{3}{4x}+\frac{3}{4y}\right)\)

Áp dụng bđt AM-GM cho 2 số thực dương x,y ta được:
\(x+\frac{1}{4x}\ge2\sqrt{x.\frac{1}{4x}}=1\left(1\right)\)

\(y+\frac{1}{4y}\ge2\sqrt{y.\frac{1}{4y}}=1\left(2\right)\)

\(\frac{3}{4x}+\frac{3}{4y}\ge2\sqrt{\frac{3}{4x}.\frac{3}{4y}}=\frac{3}{2\sqrt{xy}}\left(3\right)\)

Áp dụng bđt AM-GM ta có:

\(\sqrt{xy}\le\frac{x+y}{2}=\frac{1}{2}\left(4\right)\)

Thay (4) vào (3) ta có \(\frac{3}{4x}+\frac{3}{4y}\ge3\left(5\right)\)

(1)+(2)+(5) ta được: \(P\ge3\)

Dấu"="Xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
HT
4 tháng 5 2022 lúc 19:30

Trong toán học, bất đẳng thức tam giác là một định lý phát biểu rằng trong một tam giác chiều dài của một cạnh phải nhỏ hơn tổng, nhưng lớn hơn hiệu của hai cạnh còn lại.

Bình luận (1)
GB
4 tháng 5 2022 lúc 19:32

Trong chương trình lớp 7 thì có bất đẳng thức là:

Trong tam giác, tổng độ dài 2 cạnh bao giờ cũng lớn hơn cạnh còn lại

Bình luận (0)
FT
Xem chi tiết
H24

Các bất đẳng thức nổi tiếng

Bất đẳng thức Bunyakovsky.Bất đẳng thức Azuma.Bất đẳng thức Bernoulli.Bất đẳng thức Boole.Bất đẳng thức Cauchy-Schwarz.Bất đẳng thức cộng Chebyshev.Bất đẳng thức Chernoff.Bất đẳng thức Cramer-Rao:333
Bình luận (0)
 Khách vãng lai đã xóa
SS
12 tháng 12 2021 lúc 21:25

Tôi đã học :

-bất đảng thức cô-si

-bất đảng thức bunyakovsky

về phần ví dụ thì tui chịu nha

Quên hết rùi

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết