Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TN
Xem chi tiết
QD
10 tháng 9 2016 lúc 22:21

co gi pm nha buon ngu qua

Bình luận (0)
H24
3 tháng 8 2020 lúc 17:42

\(A=\left(x^2+1\right)^4+9\left(x^2+1\right)^3+21\left(x^2+1\right)^2-\left(x^2+1\right)-30\)

Ta thấy  \(x^2+1\ge1>0\forall x\)

\(\Rightarrow\left(x^2+1\right)^2\ge\left(x^2+1\right)\forall x\ge0\)

\(\Leftrightarrow\left(x^2+1\right)^2-\left(x^2+1\right)\ge0\)

\(\Rightarrow A=\left(x^2+1\right)^4+9\left(x^2+1\right)^3+20\left(x^2+1\right)^2+\left(x^2+1\right)^2-\left(x^2+1\right)-30\)

\(\ge1^4+9.1^4+20.1^2+0-30=0\)

\(\Rightarrow Min.A=0\Leftrightarrow x^2+1=1\Leftrightarrow x=0\)

Vậy A luôn không âm với mọi giá trị của biến.

Bình luận (0)
 Khách vãng lai đã xóa
PH
Xem chi tiết
H24
10 tháng 2 2018 lúc 16:55

Đặt x2+1=a(a\(\ge1\))

=> A= a4+9a3+21a2-a-30

        =(a-1)(a3+10a2+31a+30)

Do a\(\ge1\)=>\(\hept{\begin{cases}a-1\ge0\\a^3+10a^2+31a+30>0\end{cases}}\)

=> A\(\ge0\)(ĐPCM)

Bình luận (0)
ND
Xem chi tiết
LK
29 tháng 7 2016 lúc 15:15

Ta có

A=(x^2+1).[(x^2+1)^3+21(x^2+1)^2+9(x^2+1)-1]-30

Trong đó với mọi x:

x^2+1>=1,

(x^2+1)^3>=1,

21(x^2+1)^2>=21,

9(x^2+1)>=9

Nên

(x^2+1).[(x^2+1)^3+21(x^2+1)^2+9(x^2+1)-1]>=30

Tương đương

A=(x^2+1).[(x^2+1)^3+21(x^2+1)^2+9(x^2+1)-1]-30>=0 (đpcm)

Bình luận (0)
LH
Xem chi tiết
LC
Xem chi tiết
TM
16 tháng 7 2019 lúc 10:46

A= x^8+4x^6+6x^4+4x^2+1+9x^6+27x^4+27x^2+9+21x^4+42x^2+21-x^2-41

=x^8+13x^6+54x^4+72x^2-10

mọi mũ đều là chẵn

đfcm :))

Bình luận (0)

Đề sai nhé bạn nếu x =0 thì giá trị này nhận kq -10 đấy 

Bình luận (0)
LC
17 tháng 7 2019 lúc 13:26

Đề ko sai đâu bạn

Bình luận (0)
CP
Xem chi tiết
H24
Xem chi tiết
H24
1 tháng 3 2018 lúc 13:45

Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: 
a) 9x^2+12x-15 
=-(9x^2-12x+4+11) 
=-[(3x-2)^2+11] 
=-(3x-2)^2 - 11. 
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x. 
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x. 

b) -5 – (x-1)*(x+2) 
= -5-(x^2+x-2) 
=-5- (x^2+2x.1/2 +1/4 - 1/4-2) 
=-5-[(x-1/2)^2 -9/4] 
=-5-(x-1/2)^2 +9/4 
=-11/4 - (x-1/2)^2 
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x. 
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x. 

Bài 2) 
a) x^4+x^2+2 
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x 
suy ra x^4+x^2+2 >=2 
Hay x^4+x^2+2 luôn dương với mọi x. 

b) (x+3)*(x-11) + 2003 
= x^2-8x-33 +2003 
=x^2-8x+16b + 1954 
=(x-4)^2 + 1954 >=1954 
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến

Bình luận (0)
MD
1 tháng 3 2018 lúc 13:46

bị ''rảnh'' ak ? 

tự hỏi r tự trả lời

Bình luận (0)
AN
1 tháng 3 2018 lúc 13:47

1/ \(-9x^2+12x-15=\left(-9x^2+2.2.3x-4\right)-11\)

\(=-11-\left(3x-2\right)^2\le-11< 0\)

Câu b và câu 2 tương tự

Bình luận (0)
TN
Xem chi tiết
NL
2 tháng 4 2017 lúc 15:49

cái gì thế này???????????????????????????????????

Bình luận (0)
NN
31 tháng 10 2021 lúc 11:16

mik lp 6 nhưng nhìn bài của bn mik ko hiểu j cả luôn ý

Bình luận (0)
 Khách vãng lai đã xóa
DD
Xem chi tiết
DH
7 tháng 3 2019 lúc 10:32

Ta có: \(P=\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}=\frac{\left(x^3+1\right)\left(x+1\right)}{x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)}\)

                                                                                                                   \(=\frac{\left(x+1\right)\left(x^2-x+1\right)\left(x+1\right)}{\left(x^2-x+1\right)\left(x^2+1\right)}=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}\)

Vì \(\hept{\begin{cases}x^2+1\ge1>0\\x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\end{cases}}\)

Nên mẫu số luôn luôn khác 0

Do đó: \(P=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2}{x^2+1}\)

Vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)}\) nên \(P\ge0\left(\forall x\right)\)

Bình luận (0)
TL
12 tháng 5 2020 lúc 4:59

\(P=\frac{x^4+x^2+x+1}{x^4-x^2+2x^2-x+1}=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}\)

Do \(\left(x^2+1\right)\left(x^2-x+1\right)\ne0\)do đó không cần điều kiện của x

Vậy \(P=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2}{x^2+1}\)

\(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\x^2+1>0\forall x\end{cases}\Rightarrow P\ge0\forall x}\)

Bình luận (0)
 Khách vãng lai đã xóa