CMR NẾU a KHÔNG PHẢI BỘI CỦA 7 THÌ a6 -1 CHIA HẾT CHO 7
CMR: Nếu a ko là bội của 7 thì a6- 1 chia hết cho 7
Chứng minh rằng : Nếu a không là bội số của 7 thì a6 - 1 chia hết cho 7.
Các bạn hãy giải hộ minh nhé mình đang cần gấp!
https://cunghoctot.vn/Forum/Topic/1002821
bạn cứ vào táp này là có lời giải
Ta có nếu a không là bội của 7 thì a không chia hết cho 7 với mọi a là số nguyên lớn hơn 0
Mà a không chia hết cho 7 tức là a chia cho 7 dư 1, 2, 3, 4, 5 hoặc 6
Vì vậy a^6 chia cho 7 sẽ dư 1^6, 2^6, 3^6, 4^6, 5^6 hoặc 6^6
Vậy nếu 1^6 - 1, 2^6 - 1, 3^6 - 1, 4^6 - 1, 5^6 - 1, 6^6 - 1 chia hết cho 7 thì a^6 - 1 chia hết cho 7
Thật vậy :
- 1^6 - 1 = 1 - 1 = 0 chia hết cho 7
- 2^6 - 1 = 64 - 1 = 63 chia hết cho 7
- 3^6 - 1 = 729 - 1 = 728 chia hết cho 7
- 4^6 - 1 = 4096 - 1 = 4095 chia hết cho 7
- 5^6 - 1 = 15625 - 1 = 15624 chia hết cho 7
- 6^6 - 1 = 46656 - 1 = 46655 chia hết cho 7
Vậy a^6 - 1 chia hết cho 7 với mọi x thuộc số nguyên lớn hơn 0 không chia hết cho 7
cho ab là số nguyên cmr nếu a-2b chia hết cho 7 thì a-9b chia hết cho 7, điều ngược lại có đúng không
\(a-2b⋮7;7b⋮7\Rightarrow a-2b-7b=a-9b⋮7\)
\(a-9b⋮7;7b⋮7\Rightarrow a-9b+7b=a-2b⋮7\)
1 . CMR nếu [a,2014]=1 thì a4-1 chia hết cho 240
2. một số có 6n chữ số chia hết cho 7 . CMR nếu chuyển chữ số tận cùng của số đó lên đầu thì được 1 số chia hết cho 7
cmr nếu n không chia hết cho 7 thì n3 -1 hoặc n3+1 chia hết cho 7
xét số dư n khi chia cho 7 là 1,2,3,4,5 hoặc 6 (do n không chia hết cho 7 )
=>số dư của \(n^3\)khi chia cho 7 lần lượt là 1,6
nếu dư 1=>n^3-1 chia hết cho 7
nếu dư 6=> n^3+1 chia hết cho 7
p/s : bài này bạn dùng đồng dư cũng đc -_-
Gọi n=7x+a
n^3=(7x+a)^3, a=[1,2,3,4,5,6], x€Z vì n không chia hết cho 7
Khai hằng đẳng thức (7x+a)^3= ...+a^3
Những số kia chia hết cho 7 nên ta chỉ xét a^3
Ta thay thế lần lượt a=1,..,6
Ta chứng minh đựợc a^3-1 hoặc a^3+1 sẽ chia hết cho 7.
Mình có một bài toán CMR a^7 - a chia hết cho 7 không biết giải nên lên hỏi bác google thì nó giải như này:
a^7 - a = a(a^6 - 1) = a(a^2 - 1)(a^2 + a + 1)(a^2 - a + 1)
Nếu a = 7k (k thuộc Z) thì a chia hết cho 7
Nếu a = 7k + 1 (k thuộc Z) thì a^2 - 1 = 49k^2 + 14k chia hết cho 7
Nếu a = 7k + 2 (k thuộc Z) thì a2^ + a + 1 = 49k^2 + 35k + 7 chia hết cho 7
Nếu a = 7k + 3 (k thuộc Z) thì a^2 - a + 1 = 49k^2 + 35k + 7 chia hết cho 7
Trong trường hợp nào củng có một thừa số chia hết cho 7
Vậy: a^7 - a chia hết cho 7
Mình không hiểu vài chỗ:
- Nếu a = 7k nghĩa là sao?
- Nếu a = 7k + 1 (k thuộc Z) thì a^2 - 1 = 49k^2 + 14k chia hết cho 7. Cái khúc "thì a^2 - 1 = 49k^2 + 14k chia hết cho 7" là gì?
- Tương tự, Nếu a = 7k + 3 (k thuộc Z) thì a^2 - a + 1 = 49k^2 + 35k + 7 chia hết cho 7. Cái khúc "thì a^2 - a + 1 = 49k^2 + 35k + 7 chia hết cho 7" là sao?
- a^7 - a sao lại phân tích thành a(a^2 - 1)(a^2 + a + 1)(a^2 - a + 1) được?
- Phân tích thành a(a^2 - 1)(a^2 + a + 1)(a^2 - a + 1) để làm gì?
Nhờ các bạn giải thích hộ mình. Mình cảm ơn trước.
tìm chữ cái đứng trước kết quả đúng
(A) nếu 1 số chia hết cho 2 thì cũng chia hết cho 4
(B) nếu 1 số chia hết cho 9 thì cũng chia hết cho 3
(C) nếu 1 số không chia hết cho 2 thì cũng không chia hết cho 5
(D) nếu 1 số không chia hết cho 10 thì cũng không chia hết cho 5
(E) nếu mỗi số hạng của tổng chia hết cho 4 thì tổng chia hết cho 4
(G) nếu mỗi số hạng của tổng không chia hết cho 3 thì tổng không chia hết cho 3
(H) một hiệu chia hết cho 5 thì số hạng của hiệu chia hết cho 5
(I) nếu 1 số chia hết cho 7 thì tích của nó với 1 số bất kì cũng chia hết cho 7
tìm chữ cái đứng trước kết quả đúng
(A) nếu 1 số chia hết cho 2 thì cũng chia hết cho 4
(B) nếu 1 số chia hết cho 9 thì cũng chia hết cho 3
(C) nếu 1 số không chia hết cho 2 thì cũng không chia hết cho 5
(D) nếu 1 số không chia hết cho 10 thì cũng không chia hết cho 5
(E) nếu mỗi số hạng của tổng chia hết cho 4 thì tổng chia hết cho 4
(G) nếu mỗi số hạng của tổng không chia hết cho 3 thì tổng không chia hết cho 3
(H) một hiệu chia hết cho 5 thì số hạng của hiệu chia hết cho 5
(I) nếu 1 số chia hết cho 7 thì tích của nó với 1 số bất kì cũng chia hết cho 7
Cho a,b,c là số có 3 chữ số( a khác 0). CMR: Nếu 2a + 3b + c không chia hết cho 7 thì abc không chia hết cho 7