chứng minh đường thẳng mx-2y=m-4 luôn đi qua điểm cố định m#0. Tìm toạ độ điểm đó
Chứng minh rằng đường thẳng y = mx-2(m+2) luôn đi qua 1 điểm cố định
Gọi A(xo;yo) là điểm cố định mà đths trên luôn đi qua với ∀m
Do đó pt sau luôn đúng với∀m
yo=mxo-2m-4
⇔yo+4 = mxo-2m
Vì pt trên đúng với ∀ m nên: yo+4=0⇔yo=-4
xo-2=0⇔xo=2
cho đường thẳng d:y=mx+1.Chứng minh d luôn đi qua một điểm cố định với mọi tham số m
Giả sử điểm cố định là\(A\left(x_0,y_0\right)\)
\(⇒y_0 =mx_0+1 ∀ m\)
\(⇔ − mx_0 + y_0 − 1 = 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=1\end{matrix}\right.\)
Vậy d luôn đi qua điểm cố định\(A\left(0,1\right)\)với mọi m
chứng tỏ rằng đường thẳng y=mx-2(m+1) luôn đi qua 1 điểm cố định thuộc đường thẳng y=x-4
(P): y=\(\dfrac{x^2}{2}\) (d): y=mx+m+5
a)Chứng minh đường thẳng (d) luôn đi qua một điểm cố định với mọi giá trị m và tìm tọa độ điểm cố định đó.
b)Đường thẳng (d) luôn cắt parabol (P) tại 2 điểm phân biệt
Cho 2 đường thẳng (d1): mx -y=2 và (d2): (2-m)x+y=m
Chứng minh rằng đường thẳng d1 luôn đi qua một điểm cố định B và d2 luôn đi qua một điểm cố định C
Em cảm ơn ạ.
Ta có: (d1): y=mx-y=2
\(\Leftrightarrow y=mx-2\)
\(\Leftrightarrow y+2=mx\)
Tọa độ điểm B cố định là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}y+2=0\\x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=0\end{matrix}\right.\)
Vậy: (d1) luôn đi qua B(0;-2)
Ta có: (d2): (2-m)x+y=m
\(\Leftrightarrow y=mx-2x+m\)
\(\Leftrightarrow y+2x=m\left(x+1\right)\)
Tọa độ điểm C cố định là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}x+1=0\\y+2x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2x=-2\cdot\left(-1\right)=2\end{matrix}\right.\)
Vậy: (d2) luôn đi qua điểm C(-1;2)
Gọi \(B\left(x_B;y_B\right)\) là điểm cố định mà \(\left(d_1\right)\) đi qua
\(\Rightarrow mx_B-y_B=2\Rightarrow mx_B-\left(y_B+2\right)=0\Rightarrow\left\{{}\begin{matrix}x_B=0\\y_B=-2\end{matrix}\right.\)
\(\Rightarrow B\left(0;-2\right)\Rightarrow\left(d_1\right)\) luôn đi qua điểm \(B\left(0;-2\right)\) cố định
Gọi \(C\left(x_C;y_C\right)\) là điểm cố định mà \(\left(d_2\right)\) đi qua
\(\Rightarrow\left(2-m\right)x_C+y_C=m\Rightarrow2x_C-mx_C-m+y_C=0\)
\(\Rightarrow-m\left(x_C+1\right)+2x_C+y_C=0\Rightarrow\left\{{}\begin{matrix}x_C=-1\\2x_C+y_X=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_C=-1\\y_C=2\end{matrix}\right.\)
\(\Rightarrow C\left(-1;2\right)\Rightarrow\left(d_2\right)\) luôn đi qua điểm \(C\left(-1;2\right)\) cố định
Cho hàm số y=mx+2m+1(d). Chứng minh rằng với mọi giá trị của m thì học đường thẳng d luôn đi qua 1 điểm cố định. Hãy xác định điểm cố định đó.
Cho hai đường thẳng (d1):mx+(m-2)y+m+2=0 và (d2):(2-m)x+my-m-2=0
a) Tìm điểm cố định mà (d1) luôn đi qua và điểm cố định mà (d2) luôn đi qua
b) Chứng minh hai đường thẳng (d1) ,(d2) luôn cắt nhau tại một điểm I và khi m thay
đổi thì điểm I luôn thuộc một đường tròn cố định.
Chứng tỏ rằng đường thẳng mx + 3 + (3m - 1)y = 0 luôn đi qua một điểm cố định với mọi m. Tìm tọa độ điểm cố định đó?
Giả sử ( x 0 ; y 0 ) là điểm cố định mà đường thẳng mx + 3 + (3m – 1)y = 0 luôn đi qua.
Ta có:
m x 0 + 3 + (3m - 1) y 0 = 0 với mọi m
⇔ m x 0 + 3 + 3m y 0 - y 0 = 0 với mọi m
⇔ m( x 0 + 3 y 0 ) + 3 - y 0 = 0 với mọi m
Vậy điểm cố định mà đường thẳng luôn đi qua là (-9: 3)
Chứng tỏ rằng họ đường thẳng (d ): y=mx+m+1 luôn đi qua 1 điểm cố định.
Gọi 2 điểm cố định là \(A\left(x_0;y_0\right)\)
Thay vào ptđt (d) ta được : \(y_0=mx_0+m+1\Leftrightarrow mx_0+m+1-y_0=0\)
\(\Leftrightarrow m\left(x_0+1\right)+\left(1-y_0\right)=0\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x_0+1=0\\1-y_0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=1\end{cases}}\Rightarrow A\left(-1;1\right)\)
Vậy d luôn đi qua 1 điểm cố định A(-1;1)
Hoành độ giao điểm của (P) và (d) là nghiệm của phương trình :
14.x2=x−114.x2=x−1
<=> x2 = 4x - 4
<=> x2 - 4x + 4 = 0 <=> (x - 2)2 = 0 <=> x - 2= 0 <=> x = 2
=> y = 2-1 = 1
Vậy (P) cắt (d) tại 1 điểm duy nhất là (2;1)
=> đpcm
đúng ko ?????????????
sai thì cho mik xin lỗi
chứng minh rằng
a) Họ đường thẳng k(x+3)-7-y=0 luôn đi qua điểm cố định với mọi k
b) Họ đường thẳng (m+2)x+(m-3)y-m+8=0 luôn đi qua điểm cố định với mọi m
c) Họ đường thẳng y=(2-k)x+k-5 luôn đi qua điểm cố định với mọi k
a/ Gọi điểm cố định \(M\left(x_0;y_0\right)\)
Khi đó đường thẳng y = k(x+3)-7 đi qua M , tức \(k\left(x_0+3\right)-7-y_0=0\)
Vì đường thẳng y = k(x+3)-7 luôn đi qua M nên \(\hept{\begin{cases}x_0+3=0\\-y_0-7=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=-3\\y_0=-7\end{cases}}\)
Vậy đường thẳng đã cho luôn đi qua điểm M(-3;-7)
b/ Gọi điểm cố định là \(N\left(x_0;y_0\right)\)
Vì họ đường thẳng (m+2)x + (m-3)y -m+8 = 0 luôn đi qua N nên :
\(\left(m+2\right).x_0+\left(m-3\right).y_0-m+8=0\)
\(\Leftrightarrow m\left(x_0+y_0-1\right)+\left(2x_0-3y_0+8\right)=0\)
Ta có \(\hept{\begin{cases}x_0+y_0-1=0\\2x_0-3y_0+8=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=2\end{cases}}\)
Vậy điểm cố định N(-1;2)
Câu còn lại bạn làm tương tự nhé ^^
c/ Đơn giản thôi mà =)
Ta cũng gọi điểm cố định đó là \(M\left(x_0;y_0\right)\)
Vì họ đường thẳng y=(2-k)x+k-5 đi qua M nên :
\(y_0=\left(2-k\right)x_0+k-5\Leftrightarrow k\left(1-x_0\right)+\left(2x_0-y_0-5\right)=0\)
Ta có \(\hept{\begin{cases}1-x_0=0\\2x_0-y_0-5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=1\\y_0=-3\end{cases}}\)
Vậy điểm cố định là M(1;-3)