Cho A = \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
CMR : Nếu a là số nguyên thì A là 1 phân số tối giản
\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)rút gon phân số
CMR nếu a
là số nguyên thì phân số đó tối giản
\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^2\left(a+2-1\right)}{a\left(a^2+2a+2+1\right)}=\frac{a^2\left(a+1\right)}{a\left(a^2+2a+3\right)}=\frac{a^2+a}{a^2+2a+3}\) (đã rút gọn xong)
nếu a nguyên \(\frac{a^2+a}{a^2+a+a+3}=\frac{1\left(a^2+a\right)}{a+3\left(a^2+a\right)}=\frac{1}{a+3}\)=> tối giản
cho \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
chứng minh nếu a là số nguyên thì A là một phân số tối giản
cho biểu thức:\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
a)rút gọn biểu thức
b)CMR nếu a là số nguyên thì giá trị của biểu thức tìm đc của cậu a,là một phân số tối giản
\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\) :
a) Rút gọn biểu thức .
b) CMR nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a là 1 phân số tối giản .
Máy mik bị lag chữ a, mik thay bằng chữ x nha
a/
\(\frac{x^3+2x^2-1}{x^3+2x^2+2x+1}=\frac{x^3+x^2+x^2-1}{x^3+1+2x\left[x+1\right]}\)
\(=\frac{\left[x^3-x^2\right]+\left[x^2-x\right]+\left[x-1\right]}{\left[x^3+x^2\right]-\left[x^2+x\right]+\left[x+1\right]+2x\left[x+1\right]}\)
\(=\frac{x^2\left[x-1\right]+x\left[x-1\right]+\left[x-1\right]}{x^2\left[x+1\right]-x\left[x+1\right]+\left[x+1\right]+2x\left[x+1\right]}\)
\(=\frac{x^2\left[x+1\right]+\left[x-1\right]\left[x+1\right]}{\left[x^2-x+1+2x\right]\left[x+1\right]}\)
\(=\frac{\left[x+1\right]\left[x^2+x-1\right]}{\left[x+1\right]\left[x^2+x+1\right]}=\frac{x^2+x-1}{x^2+x+1}\)
x khác -1 bạn nhé [ví x = -1 thí ps k có giá trị]
b/
Gọi d là \(UCLN\left[x^2+x-1;x^2+x+1\right]\)
Mà \(x^2+x-1=x\left[x+1\right]-1lẻ⋮d\Rightarrow dlẻ\)
Mặt khác: \(x^2+x+1-\left[x^2+x-1\right]=2⋮d\)
=> d = 1
=> Phân số \(\frac{x^2+x-1}{x^2+x+1}\)
Tối giản khi x nguyên
Pạn thay x thành a giùm, cảm ơn
Cho phân số \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
a, rút gọn phân số đã cho
b, cmr: a là nguyên thì thì giá trị tìm được ở câu a là 1 ps tối giản ?
\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^3+a^2+a^2-1}{\left(a^3+1\right)+\left(2a^2+2a\right)}=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
b) Gọi d = ƯCLN (a2 + a -1; a2 + a +1) = > a2 + a -1 chia hết cho d và a2 + a +1 chia hết cho d
=> (a2 + a -1) - (a2 + a +1) chia hết cho d hay -2 chia hết cho d = 1 hoặc 2
Nhận xét a2 + a + 1 = a(a+1) + 1
Vì a nguyên nên a; (a+1) là hai số nguyên liên tiếp => tích a(a+1) chẵn => a(a+1) + 1 lẻ
Do đó, d không thể = 2 => d = 1
=> ps rút gọn là ps tối giản
bạn trần thị loan bạn lấy đâu ra a+1 nhân vs a^2 + a -1
\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
a/ Rút gọn biểu thức
b/ CMR nếu a là nguyên âm thì giá trị của biểu thức tìm đc câu a là 1 phân số tối giản
a: \(A=\dfrac{a^3+a^2+a^2+a-a-1}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}\)
\(=\dfrac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\dfrac{a^2+a-1}{a^2+a+1}\)
b: Nếu a là số nguyên âm thì a<0
Vì a2+a=a(a+1) chia hết cho 2 nên \(a^2+a-1;a^2+a+1\) là hai số tự nhiên lẻ liên tiếp
hay A là phân số tối giản
\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
a) Rút gọn biểu thức
b) CMR nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là 1 phân số tối giản.
cho biểu thức A=\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
a)rút gọn biểu
b)CMR nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a là một phân số tối giản
\(a.\) Điều kiện xác định: \(a\ne-1\)
Khi đó, ta có:
\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
\(b.\) Gọi \(d\) là ước chung lớn nhất của \(a^2+a+1\) và \(a^2+a-1\)
Mà \(a^2+a-1=a\left(a+1\right)-1\) là số lẻ (do \(a\left(a+1\right)\) là tích của hai số nguyên liên tiếp với \(a\in Z\) ) nên \(d\) là số lẻ
Mặt khác, \(\left[\left(a^2+a+1\right)-\left(a^2+a-1\right)\right]\) chia hết cho \(d\)
\(\Leftrightarrow\) \(2\) chia hết cho \(d\)
\(\Rightarrow\) \(d=1\) hoặc \(d=2\)
Vì \(d\) là số lẻ (cm trên) nên \(d=1\), tức là \(a^2+a+1\) và \(a^2+a-1\) nguyên tố cùng nhau
Vậy, biểu thức \(A\) là phân số tối giản.
Câu 1 : Cho biểu thức :
A= a^3+2a^2-1/ a^3+2a^2+2a+1
a/ Rút gọn biểu thức
B/ CMR nếu a là số nguyên âm thì giá trị biểu thức tìm đc của câu a là 1 phân số tối giản
Cái đề này không rõ nhé bạn! Bạn ghi lại đề bằng fx nhé
Có đầy câu hỏi tương tự đáy bạn lên các câu hỏi đó mà xem