Những câu hỏi liên quan
DT
Xem chi tiết
NH
13 tháng 8 2016 lúc 12:12

Bài 1 A=xyz+xz-zy-z+xy+x-y-1

thay các gtri x=-9, y=-21 và z=-31 vào là đc

=> A=-7680

Bài 2:a) n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n

b) 49n+77n-29n-1

=\(49^n-1+77^n-29^n\)

=\(\left(49-1\right)\left(49^{n-1}+49^{n-2}+...+49+1\right)+\left(77-29\right)\left(79^{n-1}+..+29^n\right)\)

=48(\(49^{n-1}+...+1+77^{n-1}+...+29^{n-1}\))

=> tích trên chia hết 48

c) 35x-14y+29-1=7(5x-2y)+7.73

=7(5x-2y+73) tích trên chia hết cho 7

=. ĐPCM

Bình luận (0)
NN
12 tháng 3 2023 lúc 21:40

=���+�+1+�����+��+�+����2��+���+��

=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)

=�+��+1��+�+1

=1

Bình luận (0)
LC
Xem chi tiết
H24
Xem chi tiết
NT
2 tháng 2 2023 lúc 20:35

Với n=1 thì 1^3+2*1=3 chia hết cho 3

Với n>1 thì Giả sử n^3+2n chia hết cho 3

Chúng ta cần chứg minh (n+1)^3+2(n+1) chia hết cho 3

\(A=\left(n+1\right)^3+2\left(n+1\right)\)

\(=n^3+3n^2+3n+1+2n+2\)

=n^3+3n^2+5n+3

=n^3+2n+3n^2+3n+3n+3

=n^3+2n+3(n^2+n+n+1) chia hết cho 3

=>ĐPCM

Bình luận (0)
H24
Xem chi tiết
DL
2 tháng 5 2017 lúc 21:05

 c/m: 10^n + 18n - 1 chia hết cho 27
10^n + 18n - 1= (10^n - 1) + 18n
10^n -1: vs n=2 10^2-1=99 (2 chữ số 9)
vs n=3 10^3-1=999 (3 chữ số 9)
10^n -1=99...9(n chữ số 9)
10^n -1 - 18n=99...9 + 18n
=9(11...1 + 2n) (11....1 có n chữ số 1)
=[9x3(11...1 + 2n)]/3 (Nhân 3 rồi chia cho 3)
=27[(11...1 + 2n)]/3]
Vậy ta cần chứng minh 11...1 + 2n chia hết cho 3 thì biểu thức trên sẽ chia hết cho 27
dấu hiệu của 1 số chia hết cho 3 là tổng các số trong số đó sẽ chia hết cho 3
Xét số 11...1=1+1+...+1 (n chữ số 1)
vs n=2 =>1+1=2=n
n=3 =>1+1+1=3=n
vậy tổng các chữ số của 11...1=1+1+...+1=n (n chữ số 1)
=>11...1+2n có tổng các chữ số =n+2n=3n hiển nhiên chia hết cho 3 (đpcm)

Bình luận (0)
DM
2 tháng 5 2017 lúc 21:22

S=(5+52+53+54)+(55+56+57+58)+...........+(52009+52010+52011+52012)

  =780+54(5+52+53+54)+...........+52008(5+52+53+54)

  =65*12 + 54*65*12 + .......... + 52008*65*12

  =65*12(1+54+...+52008) chia hết cho 65

=> S chia hết cho 65

Bình luận (0)
LL
Xem chi tiết
NM
24 tháng 7 2018 lúc 15:16

+A=60n+45=15(4n+3) chia hết cho 15

+A=60n+45=(60n+30)+15=30(2n+1)+15

30(2n+1) chia hết cho 30 nhưng 15 không chia hết chgo 30 nên A không chia hết cho 30

Bình luận (0)
NC
Xem chi tiết
LD
Xem chi tiết
H24
19 tháng 8 2016 lúc 19:41

Ta có:5a+3b và 13a+8b chia hết cho 2012

=>2(13a+8b)-5(5a+3b) chia hết cho 2012

=>26a+16b-25a-15b chia hết cho 2012

=>a+b chia hết cho 2012

=>8a+8b chia hết cho 2012

=>(13a+8b)-(8a+8b) chia hết cho 2012

=>5a chia hết cho 2012

Mà (5,2012)=1

=>a chia hết cho 2012

Mặt khác  a+b chia hết cho 2012

=>b chia hết cho 2012

Vậy a và b chia hết cho 2012(đpcm)

Bình luận (0)
LM
19 tháng 8 2016 lúc 19:59

5a +3b chia hết cho 2012=>8 ."5a +3b"chia hết cho 2012 =>40a +24b chia hết cho 2012

13a +8b chia hết cho 2012=>3 "13a+8b" chia hết cho 2012=>39a+24b chia hết cho 2012

=>40a +24b- "39a+24b" chia hết cho 2012+> a chia hết cho 2012

5a +3b chia hết cho 2012=>13"5a+3b' chia hết cho 2012 =>65a+39b chia hết cho 2012

13a+8b chia hết cho 2012 =>5"13a+8b"chia hết cho 2012=>65a+40b chia hết cho 2012
=> 65a +40b - "65a+39b"chia hết cho 2012=>b chia hết cho 2012 

Vậy .....

Bình luận (0)
LL
Xem chi tiết
DL
9 tháng 6 2016 lúc 13:32

a) \(A=n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)\)

Với mọi n nguyên thì A là tích của 3 số nguyên liên liếp nên A chia hết cho 3. ĐPCM

b) A chia hết cho 3 với mọi n nguyên. Vì vậy, để A chia hết cho 15 thì A sẽ chia hết cho 5.

Các giá trị nguyên dương nhỏ hơn 10 của n là: 3;4;5;8;9

Bình luận (0)
SG
9 tháng 6 2016 lúc 13:46

a) A = n3 +3n2 + 2n

A = n3 + n2 + 2n2 + 2n

A = n2.( n+1) + 2n.(n+1)

A = (n+1).(n2+2n)

A = (n+1).n.(n+2)

A = n.(n+1).(n+2)

Vì n.(n+1).(n+2) là tích 3  số nguyên liên tiếp nên n.(n+1).(n+2) chia hết cho 3

=> A chia hết cho 3

Chứng tỏ A chia hết cho 3 với mọi n nguyên

b) Ta có: 15 = 3.5

Mà (3,5)=1, A chia hết cho 3 nên ta phải tìm n nguyên dương để A chia hết cho 5

Do A = n.(n+1).(n+2) nên để A chia hết cho 5 thì trong 3 số n;n+1;n+2 có 1 số chia hết cho 5

Mặt khác n<10 nên n<n+1<n+2<12

Ta có các nhóm số thỏa mãn là: 3.4.5 ; 4.5.6 ; 5.6.7 ; 8.9.10 ; 9.10.11

Vậy các giá trị của n tìm được là: 3;4;5;8;9

Bình luận (0)
YG
8 tháng 10 2017 lúc 16:54

chứng minh rằng:  n.(n+8).(n+13) chia hết cho 3

Bình luận (0)
LL
Xem chi tiết
TB
5 tháng 10 2021 lúc 10:50

chịu bài này khó quá

ai biết đc...

nếu muốn

Bình luận (0)
 Khách vãng lai đã xóa
DH
5 tháng 10 2021 lúc 11:00
Khó vãi cả đ
Bình luận (0)
 Khách vãng lai đã xóa